Reproducible and Automated
Storage systems experimentation
with Popper

Jayjeet Chakraborty
Mentored by Carlos Maltzahn, Ivo Jimenez, Jeff LeFevre

UC Santa Cruz

©iis, CROSS | St

ek, UNIVERSITY OF CALIFORNIA

Problems in doing Systems experiments

rados - avg_lat - thread 48

k-’_.—,-——-—_
o
R‘un test querves 04
3 02
a ELILD INSTALLING CEPH - = v
‘compile Ceph, Ceph. best suits your needs. 0 20 a0 60 80 100 120

Time (5)

BUILD PREREQUISITES
Tip: Check this section to see f there are specitc prarecuistes RECOMMENDED METHODS

Adobug buid of Coph may tako around 40 gigabytos. If you wantt

total sk spaco on the Vs atlast 60 ggabyt Cephad instlls and Ceph cluster nd systemd, withthe CLI and dash-
Ploase also b aware that some distibutons of Linux, ke Cent0s b0rd GUL
on.LVM my reseve arg porton of ok opace ofa fypal sz
+ cephadm only supports Octopus and newer releases
T + cephadi 0 y supp } and dashboard fetures to
manage cluster deployment.
Note: Somo disrutons thatsupport Googlas memory profler |

pectrooned cephadm tequires container support (podman or docker) and Python 3 VERIEY OATA 0BJECTS LONDED, shouid soe tochdsta 5

Fook deploys and i nd

Google ClOUd Pl atfornr BUILD CEPH provisioning Pl Rook as the way to un 1o connect an existing

Ceph storage cluster to Kubemetes.

Goph s buit using cmake. To buid Ceph, navigas fo your cloned (

Y. + Rook only supports Nautius and newerrelases of Ceph s
e « Rookis the preferred method for running Ceph on Kubernetes, or for connecting a Kubernetes cluster to an existing

(evteral) Coph cluster.

Nt By gt o 1w o versinof et

loads. Pass -DMAKE. BUILD. o features inthe CLI and dashboard are ful supported.
coph exscutalesinstoac

Boot VMs or bare metal

Nodes Build, Deploy and Run

: Prepare plots and
experiments

notebooks

Should be platform independent and automated ! Otherwise time
consuming and error-prone !

Overview of Containers

Containerized Applications

Host Operating System

Infrastructure

Less resource usage than VMs

Platform independent and portable software
Consistent operation across environments
Greater efficiency

-

Virtual Machine

Guest
Operating
System

~

r

Virtual Machine

Guest
Operating
System

~

= 2
Virtual Machine

Guest
Operating
System

- oI N J

Infrastructure

Containerizing Commands

$ docker run -e BLOCKDEVICE=sdb
-e IODEPTH=32
-v $PWD:/workspace
--rm
--entrypoint /bin/bash
-w /workspace
bitnami/kubectl:1.17.4
./run_benchmarks. sh

Solves platform dependency.
But still lacks automation !

What is Popper ?

Operating System

docker \UBJ

&2 podman

Popper

Slide borrowed from lvo Jimenez

steps:
- id: install lulesh
uses: popperized/spack@master
args: [spack, install, -j8, lulesh+mpi]

- 1d: delete existing jobs
uses: popperized/bin/sh@master
args: [rm, -fr, sweep/jobs]

- 1d: install sweepj2
uses: popperized/python-actions@master
args: [pip, install, sweepj2]

- 1d: generate sweep
uses: jefftriplett/python-actions@master
args: [

P12,

]

- 1d: run sweep
uses: popperized/spack@master
args: [run-parts, ./sweep/jobs]

Reproducible and Scalable Ceph and SkyhookDM
experimentation with Popper

Ceph

Provides 3 types of storage APP APP HOST/VM CLIENT
interface: File, Object, Block |

RADOSGW RBD CEPHFS

No central point of failure. Uses ABKot-bosed REST | otalo and uly- | APOSK comptan
. Sy g dlstnbutod blod(davi_oo, di_stn'but_od file system,
CRUSH maps that contains e witha Linackorml ot |vith » Linux kool clé

object - OSD mapping. A
CRUSH map in each client.
Client talks directly to OSD.

Highly extensible through
plugins.

SkyhookDM

Extends the Ceph object store using custom
C++ Object classes for data management in
the Storage layer.

Allows push down of operations like
SELECT, PROJECT, AGGREGATE to the
storage layer.

Supports querying both row oriented and
column oriented data.

High-Level Workflow for SkyhookDM Experiments

S
Jupyter
— 73y N
e’b/‘ ® \‘\‘609
YU &
Spawn nodes Baselinek8scluster. Grafana prometheus Benchmark Study the Jupyter
and deploy k8s. Measure Disk I/O, throughput by notebooks, Plots
Get the config. Network latency, etc. Deploy Cephand running queries on and Grafana
benchmark the hundreds of GBs of snaps.

object store. tabular data.

Should be platform independent and automated !

10

‘Popperizing” the SkyhookDM Experimentation Workflow

Development and testing environm

Jeff LFevre edited this page on 11 Aug 2019 - 39 revisions

Skyhook development and testing only requires a Linux environt
Linux machine (Ubuntul8 preferably), a VM, or Docker containe:
requires about 30GB of disk space.

Ubuntu 18.04 LTS is recommended, previous Ubuntu versions (1
Skyhooks additional library dependencies. Other Linux versions
from major distribution of those Cophis likely to v

d by C

Linux desktop instructions
« o use your own Linux machine, please o directly to the B
VM Instructions (Virtual Box or V

This s not necessarily recommended due to resources required
use Docker as below.

1.0n your machine's bios, enable Intel/AMD virtual execution «
2. Install VirtualBox or VMWare

3. Create a new Ubuntu 18.04 LTS image, use settings as at le:
4. Start t. You can be any user you like, the user just needs su

p /usr/local/repas/skyhook
o cd /usr/local/repos/skyhook

Goto the Build wiki page and continue from there, then you |
queries page.

Docker instructions

Install n your host machine. A Linux or Mac host ma
see our Notes for installing Docker Home.
2. On your host machine, create a dir path for your the skyhoo
about 30 GB of storage space to build skyhook-ceph. The s,
machine but visible for compile within the container by usin
container will need write access to this dir on your lacal mac
docker on a local linux machine but if having trouble saving
it may need some configuration,

O mkdir -p /nome/jp/repos/skyhook

Start the container, note absolute paths are required
docker run ~ti ~v /path/on/ay/local/machine: /maps/to/son
o docker run ~ti -v /hone/jp/ repos/skyhook: /usr/local/repe
= Note your chosen path in the container will be creat
4. Now the container should be running and you should be at a
O cd fusr/local/repos/skyhook
You can now detach from the running container ctrl-p ctri-q
container is up and running, note the container_id
o Reattach to the running container docker attach container.

o Donottype exit in the container unless you really want t
6. Now you can follow directions on the Build wiki page, then you

queries page.
e Gt
w all running containe

cker container 1
o exit from inside a running container and terminate it exit
o detach from running co

rertip ctrig

o show all containers and their current status dacker ps -3
attach o running container docker attach <container_id>

o stop a running container docker stop <container it

show all images stored locally docker isages -a

“Thanks to Mark Seibel for help with testing these

Run test querles

Be sure you have started a real or virtual Ceph cluster as per the Build page.

REATE STORAGE POOL for the test data The below commands assume you have built SkyhookDM and are in
the build dir. For a non-virtual cluster, you can remove the bin/ prefix

GET TEST DATA. Each object contains 10 rows, and is formatied as per type indicated, where type is one of

yFor here are 2 test data objects for each supported data form.
083 TvpE-s

o8y Tveeser Anid

fremives TBUF_FLEX_ROW

083 BASE MAEL aky ook (002, TYPE) Linestem

iin o i
£%5 1085 _anse e 51
“get hetpa:/7users.

i e/ TeTavr oy shymonkan/ S ex ranta/ $(0B3_BASE NANE). 83

STORE TEST DATA into Ceph objects. Setting the PATH varlabie is oniy needed when using a virtual dev
Cluster from the current build &

yes | PATH=SPATH:bin ../src/progly/rados-store

Uineitem skyhook. $(082_TYPE} . Lineite

3 clone and build. Tested on clean install of 64-bit Ubuntu 16.04 and Centos?. NOTE: requires
B Gick space to

Be sure you have enough disk space to build.

Qn Cloudiab machines, the s (HoHE) dir

15 not 1arge enough, o format and mount one of the larger
disks NOTE: do not wipe your primary disk!

#BUILD Ceph with Skyhook

Add -iN to create n jobs i.e., if you have 12 cores use -112 to compile with 12 cores
Takes about 13 min with 3.2 GHz 12 core CPU
Al iz not required, but make —312 all takes abou
To save time, just make cls_tabular run-auery

25 min with 3.2 GHz 12 core CPU
for repeat builas, most Skyhook functionality is in there

Start a virtual cluster for dev testing
After compiling vstart above, from the build dir, stop any previously runaing VStart and then start a new one

<-/arc/atop.sh; MGR-1 MDS-8 MON-1 0SD=3 ../src/vstart.sh —d -n -x

- MpoRTANT:

anytime you recompile Skyhook you should also recompile vstart and stop/start the virtua:

popper

popper

popper

popper

popper

popper

kubernetes.yml

iperf/fio.yml

rook.yml

prometheus.yml

radosbench.yml

run_query.yml

Building and Deploying Ceph on Bare metal

12

Building manually vs Building with Popper

$ git pull;

$ git checkout luminous;

$ git branch -a;

$ git submodule update --init)
--recursive;

$ sudo ./install-deps.sh;

$./do_cmake.sh;

$ popper run dev-init

$ popper run build

- id: dev-init
uses: docker://alpine/git:v2.24.3
runs: [sh, -ec]
args:
=l
git clone \
—--recursive \
-—depth 1 \
——shallow-submodules \
——branch nautilus \
https://github.com/ceph/ceph
n -s ../../../src ceph/src/cls/tabular
echo "add_subdirectory(tabular)" >> ceph/src/cls/CMakelLists.txt

- id: build

uses: docker://uccross/skyhookdm-builder:nautilus

runs: [bash]

args: [scripts/build.sh]

env:
travis config: 4 threads, release build
CMAKE_FLAGS: "-DB0OST_J=4 -DCMAKE_BUILD_TYPE=Release -DWITH_MANPAGE=0FF
BUILD_THREADS: "4"

Pack all these steps in a Popper workflow
and let Popper handle the repetitive and
error-prone work 13

Deploying Ceph manually

ANSIBLE .

puppet

ceph-deploy -- Deploy Ceph with minimal infrastructure

ceph-deploy is a way to deploy Ceph relying on just SSH access to the servers, sudo , and some Python. It runs
fully on your workstation, requiring no servers, databases, or anything like that.

Learn writing and managing multiple
playbooks, vars files, commands in READMEs,
host files, etc. Overwhelming for new Ceph
developers.

Require knowledge about and using a series of

different DevOps tools. Makes the entry
barrier high.

14

Deploying Ceph using Popper

Popper workflows abstract away tools
like Ansible, Terraform, etc. Put all the
scripts, playbooks, configurationin a
repository and orchestrate with Popper.

popper run —-f wf.yml

A single command to deploy Ceph while
using your favourite DevOps tools !

— README.md
— ansible

— deploy-libcls tabular.yml
— deploy-mons-and-osds.yml
F— files

— group vars

| L— all.yml

l— purge cluster.yml

F— geni

— cloudlab cmd.py
L— config.py

L— wf.yml

15

Building and Deploying on Kubernetes via Rook

Even Easier!

16

Why Kubernetes ? Why Rook ?

4 Y4 N

Uses the facilities provided by
Kubernetes. Provisioning,
scaling, upgrading, disaster
recovery.

Turns storage software into
self-managing, self-scaling, and
self-healing storage services.

:

\ AN)
4 N)
Allow using tools from the ROO K
Kubernetes ecosystem. Get

an operator for everything.

- AN /

Make experimentation
container native.

17

Building Ceph and SkyhookDM inside Docker

- id: build

uses: docker://uccross/skyhookdm-builder:nautilus

runs: [bash]

args: [scripts/build.sh]

env:
travis config: 4 threads, release build
CMAKE_FLAGS: "-DBOOST_J=4 -DCMAKE_BUILD_TYPE=Release
BUILD_THREADS: "4"

- id: build-rook-img
uses: docker://docker:19.03.10
args:
build
- ——build-arg=CEPH_RELEASE=v14.2.9
- ——tag=uccross/skyhookdm-ceph:v14.2.9

- ——file=docker/Dockerfile.release

18

Deploying Ceph on Kubernetes with Rook

$ kubectl apply -f common.yml

$ kubectl apply -f operator.yml
$ kubectl apply -f cluster.yml
$ kubectl apply -f toolbox.yml

Select the correct config files, install kubectl, run the
kubectl apply 'sinproper order.
More time spent with Rook that is not really needed !

19

Making Rook Reproducible and Automated

Clone the repository and $ popper
run -f rook.yml setup-ceph

— 1id: setup-ceph

uses: docker://bitnami/kubectl:1.17.4
runs: [bash, -euc]

args:

kubectl apply
kubectl apply
kubectl apply
kubectl apply

. /rook/common.yaml
./rook/operator.yaml
./rook/cluster_ceph.yaml
. /rook/toolbox.yaml

20

Easy upgrades with Rook than Bare metal

21

Metadata

storage C ep h

Object Storage Cluster

cls_ tabular.cc

R

SSH into each node and upload the
shared libraries at
/usr/lib64/rados-classes/

Using Obiject class SDK

Y

libcls_tabular.so

22

Upgrading Ceph to SkyhookDM manually

Use an existing Ceph cluster

Assumes Ceph luminous version. Just build and deploy our extensions library as below, there is no need to stop or restart the

cluster.

1. Clone and build SkyhookDM as per our Build instructions, requires ~10 GB of disk space.

osd class load list =

2. Copy the skyhookdm library file into the libcls directory on each of the OSDs, requires sudo

o Centos7: LIB_CLS_DIR=/usr/1lib64/rados-classes/
o Ubuntul18: LIB_CLS_DIR=/usr/lib/x86_64—1linux—gnu/rados—classes/

from the BUILD dir:
for (((1 =0 ;
echo "copying shared lib to osd$i;"

scp
ssh
ssh
ssh
ssh
ssh

done;

osd$i
osd$i
osd$i
osd$i
osd$i

i < $nosds ; i++));

osd class default list

do

./lib/libcls_tabular.so0.1.0.0 osd$i:/tmp/;

"sudo cp /tmp/libcls_tabular.so.1.0.0 ${LIB_CLS_DIR};";
"cd ${LIB_CLS_DIR};
"cd ${LIB_CLS_DIR};
"cd ${LIB_CLS_DIR};
"cd ${LIB_CLS_DIR};

if test -f libcls_tabular.so.1l; then sudo unlink libcls_tabular.so.1; fi
if test -f libcls_tabular.so; then sudo unlink libcls_tabular.so; fi";
sudo ln -s libcls_tabular.so.1.0.0 libcls_tabular.so.1;";

sudo ln -s libcls_tabular.so.1l libcls_tabular.so;";

Upgrade the configuration file and SSH into every OSD and copy the

libraries at the LIB_CLS_DIR of Ceph. Restart OSDs.
Heavy Manual Work !

*

*

23

Upgrade from Ceph to SkyhookDM on Rook using Popper

// deploy vanilla Ceph
$ popper run deploy-ceph

// run a popper step to inject libcls tabular.so and
upgrade to SkyhookDM
$ popper run deploy-skyhook-ceph

24

A Scalable experimentation Loop using Popper

popper run -f
kubernetes.yaml

STEP3 STEP 1

popper run dev.yml Analyze results
build-skyhook-image

Update experiment
parameters and

Scale up

“Popperized”

popper run -f dev.yml experimentation

push-skyhook-image

popper run -f rook.yml
deploy-skyhook

STEP 2

popper run -f
query.yml run-exp

Run workflow 25

Making Notebooks portable with Docker

&docker

docker run
-p 8888:8888
-v ~/notebooks:/home/jayjeet
jupyter/tensorflow-notebook Let Popper take care of the
“‘nbconvert --execute error-prone components !
--to=notebook
./run_query/notebook/plot.ipynb”

popper run plot-results

26

In [1]:

In [2]:

Notebooks , Grafana

import os
import json
import matplotlib.pyplot as plt

results_dir = '../results'
files = os.listdir(results_dir)

iterate over each result file and plot the results
for file in files:
if not file.endswith('.json'): continue
with open(os.path.join(results_dir, file)) as f:
results = json.load(f)

seconds = []
bandwidth = []

for run in results(["intervals"]:
seconds.append(float(run[“sum"]["end"]))
bandwidth.append(float(run["sum"]["bits_per_second"])/(1000*1000%1000))

plt.plot(seconds, bandwidth, markersize=10, linewidth=3.0, label=f"{os.environ['SERVER']}

pin the range between 0 and 10
plt.ylim(0.0, 10.0)
plt.xlabel('Time (in seconds)')
plt.ylabel('Bandwidth (Gb/s)')
plt.title('IPERF3 Benchmarks')
plt.legend()

plt.savefig(os.path.join(results_dir, './iperf-benchmarks.png'), dpi=300, bbox_inches='tight')
plt.show()
IPERF3 Benchmarks
10
B,
8 Wm
g .
B
g4
a
2 { == river.c070.ssl-hep.org and river-c064.ssl-hep.org
river-c070.ssl-hep.org and river-c065.ssl-hep.org
river-c070.ssl-hep.org and river-c071.ssl-hep.org
o

o 10 20 30 40 50 60
Time (in seconds)

dashboards and Plots

and {file[:-5]}")

Throughput (MB/s)

1920 x0 2%

Client Pod CPU Usage

Client Pod Memory Usage:

05D Network /0

TN - nons

rados - avg_bw - thread 48

1000 A

800 A

600

400 ~

200 4

m— \\rite
= Sequential read
=== Random read

20

40 60 80 100 120
Time (s)

27

The code is available here.

Thank you !

Questions ?

P @heyjc2s

28

https://github.com/uccross/skyhookdm-workflows/tree/master/rook

