
Reproducible and Automated
Storage systems experimentation

with Popper
Jayjeet Chakraborty

Mentored by Carlos Maltzahn, Ivo Jimenez, Jeff LeFevre

UC Santa Cruz

1

Problems in doing Systems experiments

2

Build, Deploy and Run
experiments

Boot VMs or bare metal
Nodes Prepare plots and

notebooks

Should be platform independent and automated ! Otherwise time
consuming and error-prone !

Overview of Containers

3

● Less resource usage than VMs
● Platform independent and portable software
● Consistent operation across environments
● Greater efficiency

Containerizing Commands

4

$ docker run -e BLOCKDEVICE=sdb
 -e IODEPTH=32
 -v $PWD:/workspace
 --rm
 --entrypoint /bin/bash
 -w /workspace
 bitnami/kubectl:1.17.4
 ./run_benchmarks.sh

Solves platform dependency.
But still lacks automation !

What is Popper ?

5

Hardware

Popper

Containers

Operating System

6
Slide borrowed from Ivo Jimenez

Reproducible and Scalable Ceph and SkyhookDM
experimentation with Popper

7

Ceph

8

1. Provides 3 types of storage
interface: File, Object, Block

2. No central point of failure. Uses
CRUSH maps that contains
object - OSD mapping. A
CRUSH map in each client.
Client talks directly to OSD.

3. Highly extensible through
plugins.

9

SkyhookDM

● Extends the Ceph object store using custom
C++ Object classes for data management in
the Storage layer.

● Allows push down of operations like
SELECT, PROJECT, AGGREGATE to the
storage layer.

● Supports querying both row oriented and
column oriented data.

High-Level Workflow for SkyhookDM Experiments

Benchmark
throughput by

running queries on
hundreds of GBs of

tabular data.

Spawn nodes
and deploy k8s.
Get the config.

Baseline k8s cluster.
Measure Disk I/O,

Network latency, etc.

Study the Jupyter
notebooks, Plots

and Grafana
snaps.

 Deploy Ceph and
benchmark the

object store.

10

Should be platform independent and automated !

11

“Popperizing” the SkyhookDM Experimentation Workflow

Building and Deploying Ceph on Bare metal

12

Building manually vs Building with Popper

13

$ git pull;
$ git checkout luminous;
$ git branch -a;
$ git submodule update --init
--recursive;
$ sudo ./install-deps.sh;
$./do_cmake.sh;

$ popper run dev-init

$ popper run build Pack all these steps in a Popper workflow
and let Popper handle the repetitive and
error-prone work

Deploying Ceph manually

14

● Learn writing and managing multiple
playbooks, vars files, commands in READMEs,
host files, etc. Overwhelming for new Ceph
developers.

● Require knowledge about and using a series of
different DevOps tools. Makes the entry
barrier high.

Deploying Ceph using Popper

15

Popper workflows abstract away tools
like Ansible, Terraform, etc. Put all the
scripts , playbooks , configuration in a
repository and orchestrate with Popper.

A single command to deploy Ceph while
using your favourite DevOps tools !

Building and Deploying on Kubernetes via Rook

16

Even Easier !

Why Kubernetes ? Why Rook ?

17

 Turns storage software into
self-managing, self-scaling, and

self-healing storage services.

Allow using tools from the
Kubernetes ecosystem. Get
an operator for everything.

Uses the facilities provided by
Kubernetes. Provisioning,

scaling, upgrading, disaster
recovery.

Make experimentation
container native.

Building Ceph and SkyhookDM inside Docker

18

Deploying Ceph on Kubernetes with Rook

19

Select the correct config files, install kubectl, run the
kubectl apply ‘s in proper order.

More time spent with Rook that is not really needed !

Making Rook Reproducible and Automated

20

Clone the repository and $ popper
run -f rook.yml setup-ceph

Easy upgrades with Rook than Bare metal

21

22

libcls_tabular.socls_tabular.cc

Using Object class SDK

SSH into each node and upload the
shared libraries at
/usr/lib64/rados-classes/

Upgrading Ceph to SkyhookDM manually

23

Upgrade the configuration file and SSH into every OSD and copy the
libraries at the LIB_CLS_DIR of Ceph. Restart OSDs.

Heavy Manual Work !

osd_class_load_list = *

osd_class_default_list = *

24

// deploy vanilla Ceph
$ popper run deploy-ceph

// run a popper step to inject libcls_tabular.so and
upgrade to SkyhookDM
$ popper run deploy-skyhook-ceph

Upgrade from Ceph to SkyhookDM on Rook using Popper

25

STEP 3

Analyze results

STEP 1

Update experiment
parameters and
Scale up

STEP 2

Run workflow

“Popperized”
experimentation

popper run -f
kubernetes.yaml

popper run dev.yml
build-skyhook-image

popper run -f rook.yml
deploy-skyhook

popper run -f dev.yml
push-skyhook-image

popper run -f
query.yml run-exp

A Scalable experimentation Loop using Popper

Making Notebooks portable with Docker

26

 docker run
-p 8888:8888
-v ~/notebooks:/home/jayjeet
jupyter/tensorflow-notebook
“nbconvert --execute
--to=notebook
./run_query/notebook/plot.ipynb”

popper run plot-results

Let Popper take care of the
error-prone components !

27

Notebooks , Grafana dashboards and Plots

28

Thank you !
Questions ?

The code is available here.

@heyjc25

https://github.com/uccross/skyhookdm-workflows/tree/master/rook

