MCS in LH_2 , Field-off ### Content - Systematic uncertainty evaluation using MC for US Tracker parameters (position, direction) - In parameter spaces with ranges proportional to MC/Data offsets - To assess if beamline magnet scaling is necessary - Or include in systematics - TOF10 distribution and Momentum Pz ### Overview #### Example, 170MeV/c Empty #### Source of uncertainty Differences between distributions of parameters X,Y,dX/dz,dY/dz in MC Rec. and Data in selected beam are observed in most configurations. These should effect measured scattering due to differing beam positions in: - Tracker volume (reconstruction efficiency, asymmetric beam loss) - LH2 absorber (LH2 Path length) ... The size of the effect is assessed. dX/dz (mm) # US tracker, ref. plane | Configuration | Mean | | | *71 | |-------------------------|----------------------|-----------------------|----------------------------|---------------------------| | | Х | Υ | dX | dY | | 170MeV/c Empty Data | -28.85 ± 0.3072 | 0.6512 ± 0.3511 | 0.0063 ± 0.0001061 | 0.0001015 ± 0.000108 | | 170MeV/c Empty MC Rec. | -13.78 ± 0.5683 | -3.372 ± 0.6364 | 0.002814 ± 0.0001879 | 0.0009539 ± 0.0001923 | | 170MeV/c Empty MC Truth | -13.8 ± 0.5687 | -3.376 ± 0.6367 | 0.003314 ± 0.0002532 | -0.004793 ± 0.0002556 | | 170MeV/c Full Data | -28.34 ± 0.2981 | 1.35 ± 0.3337 | 0.006381 ± 0.0001028 | -0.0002352 ± 0.0001038 | | 170MeV/c Full MC Rec. | -13.08 ± 0.5836 | -3.194 ± 0.6457 | 0.002813 ± 0.0001898 | 0.001009 ± 0.0001954 | | 170MeV/c Full MC Truth | -13.11 ± 0.584 | -3.162 ± 0.645 | 0.003179 ± 0.0002567 | -0.00508 ± 0.0002657 | | 200MeV/c Empty Data | -2.458 ± 0.439 | 0.004072 ± 0.4167 | -0.0002688 ± 0.0001256 | -1.25e-05 ± 0.0001096 | | 200MeV/c Empty MC Rec. | -0.9516 ± 0.7157 | -5.432 ± 0.6811 | -0.0003786 ± 0.0002104 | 0.002134 ± 0.0001762 | | 200MeV/c Empty MC Truth | -0.9895 ± 0.7181 | -5.393 ± 0.6812 | 0.0001874 ± 0.000247 | -0.003805 ± 0.0002305 | | 200MeV/c Full Data | -2.544 ± 0.4276 | 0.8684 ± 0.4028 | -0.0002074 ± 0.0001215 | -0.0002647 ± 0.0001065 | | 200MeV/c Full MC Rec. | -2.022 ± 0.7117 | -6.227 ± 0.6817 | 0.0003276 ± 0.0002029 | 0.002173 ± 0.0001837 | | 200MeV/c Full MC Truth | -1.916 ± 0.7154 | -6.269 ± 0.6846 | 0.000483 ± 0.0002461 | -0.003859 ± 0.0002316 | | 240MeV/c Empty Data | -13.85 ± 0.5078 | 2.136 ± 0.4506 | 0.004391 ± 0.0001541 | 4.442e-05 ± 0.0001269 | | 240MeV/c Empty MC Rec. | -7.256 ± 0.5156 | -8.406 ± 0.4653 | 0.00218 ± 0.000159 | 0.002039 ± 0.0001303 | | 240MeV/c Empty MC Truth | -7.25 ± 0.5158 | -8.429 ± 0.4649 | 0.002641 ± 0.0001889 | -0.004002 ± 0.0001621 | | 240MeV/c Full Data | -12.92 ± 0.4026 | 1.552 ± 0.3545 | 0.004525 ± 0.0001214 | -0.0002201 ± 9.723e-05 | | 240MeV/c Full MC Rec. | -6.678 ± 0.519 | -9.19 ± 0.4665 | 0.001933 ± 0.0001595 | 0.001719 ± 0.0001304 | | 240MeV/c Full MC Truth | -6.725 ± 0.5194 | -9.212 ± 0.4659 | 0.002298 ± 0.0001884 | -0.004266 ± 0.0001695 | | | | | | | ### **Estimation method** #### Transverse position parameters - The residual between the mean of distributions of parameters X & Y in MC Rec. and Data in selected beam are used to set the parameter space in which the incident beam is scanned across. - Initially this range is exaggerated (2x) to see the behaviour of the effects. #### Directional parameters ... Similarly but - Discrepancy in UST dX translates to a rotation of dX/dZ rad for P(x,y,z) around Y axis - Discrepancy in $UST_{\frac{dY}{dZ}}$ translates to a rotation of $\frac{dY}{dZ}$ rad for P(x,y,z) around X axis - A new beam is written for each scan point across this range and is simulated through the corresponding geometry. - MCS analysis of the simulations provides scattering distribution for each scan point. - RMS, Kurtosis & Skewness of the above scattering distributions will show the significance of the systematic effect. - ... and each distribution measured with UST tracker parameters within an appropriate parameter range will be used to calculate bin error. ### **TOF10** and Momentum #### TOF10 Distribution and electron peak correction - An offset was observed between data/MC in the TOF10 distribution - An accepted routine is to shift both distributions so that $\langle \beta_e \rangle = 1$ or $TOF10_e = 25.492ns$ - This was done by locating the center of the maximum bin in each case, - It has been improved by using the mean of a fitted Gaussian function # Resulting correction, 170MeV/c # Resulting correction, 200MeV/c # Resulting correction, 240MeV/c ## MCS in LH_2 , Field-off ## Conclusions - US Tracker parameters data/MC offset - Code in the bug stopped the simulations overnight so results will be presented next year. - Simulation processing code has been written that will be useful for calculation of uncertainty due to other sources - Momentum Pz - New correction method aligns e-peaks perfectly in all data-sets but muon/pion peaks still appear offset - Similarly with the US Tracker parameters uncertainty calculation, the momentum (Pz) will be scanned across a parameter space proportional to the discrepancies seen between data/MC. - Uncertainty significance will decide if beam-line magnet scaling is necessary or effect is included in error calculation