A.Zhokin, ITEP-Moscow 15.02.2006

Geant4 Simulation (for FP420)

[in OSCAR(CMS) framework]

items:

- geometry description (\Rightarrow xml)
- multiple interactions (MI)
- multiple scattering (MSC)
- summary

Pocket geometry

- subtraction Solid combine Tubs and Box solids
- materials: Stainless Steel, Vacuum, Air
- beam pipe (bp) radius: 40 mm
- bp unit length (bpul) : 2.8 m
- **bp** wall thickness (bpt) : 5 mm
- bp pocket y-thickness (bppyt) : 3.5 mm
- pocket z-size: 30 mm
- y pocket shift: 10 mm
- y-gap(pocket station): 2 mm
- window thickness (wt) : 0.25 mm

The configuration unit to be used for full geometry set up (with 3, 5, ...stations)

Station geometry

- few Planes (up to 10) per Station
- materials: Silicon, Boron Polyethylene., Ceramic, Air,
- Station dimensions: 84 x 100 x 25 mm^3
- 1-st layer Si thickness: 0.200 mm
- bumpbouding thickness: 0.020 mm
- 2-nd layer Si thickness: 0.300 mm
- Ceramic thickness (ct) : 1.00 mm
- 2-layer-Si Plane dimensions: 80 x 98 x 2 mm^3
- Distance between centers of Planes: 2.5 mm
- Parameters in black brackets were varied in simulation studies
 - One can generate events with interactions in the detector
 - Analysis at aStep, EndOfTrack, EndOfEvent:

Scan with protons

- eta: (8.8 \div 11.4) \simeq ($\tan(\theta)$: 120./420000. \div 10./420000.)
- phi: $0 \div 2\pi$
- Vertex: (-40. ÷ +40., +8. ÷ +50., 0.) mm
- $P_p = 70 \text{ GeV}$, 50000 ev.
- to check the details of geometry: put bpt = 0.1mm, bppyt = 1.5mm to avoid too large # MI, wt = 0.5mm

Define the sign of !MI :
$Z_{lastpoint}^{prim.track} > Z_{position}^{III-rdStation}$

Starting points of secondaries

MI in proton scan

(still 70 GeV protons)

check w/ number of secondary particles: \Rightarrow strong correlation(histogram) w/ cut: $Z_{lastpoint}^{prim.track} < Z_{III-rdStation}$

portion of **MI** vs. Y-vtx at $Z_{infront}^{I-stStation}$ and z range of I-st Station \iff track length in St.Steel vs. Y-vtx

start real job with
$P_p = 7$ TeV,
vertex(0.,20.,0.),
2500 ev. / point,
wt = 0.25 mm,
bpt = 0.01 mm,
bppyt = 3.5 mm

Number of Planes

-2

MI as function of wt

• strong rise vs. wt

• contribution of 250 μm wt to MI is \simeq 1.2 %

• contribution of 1 mm wt to MI is \simeq 4 %

check MI contribution for Ceramic ...

MI as function of ct

(1 mm ct is foreseen as default)

strong rise vs. ct

- at $10\mu m$ ct there is just Silicon contribution to MI $\Longrightarrow \le 6\%$
- pure Ceramic contribution of 1mm thickness ~ 15 % (reminder: w/ 10 Planes and 3 Stations, overall Ceramic thickness is 3 cm)

One can do estimation of MI portion for different number of Planes and ct keeping fixed the number of Stations = 3 and wt= $250\mu m$

Estimation of MI portions(%) with 3 Stations

Ct,mm	2 Planes	4 Planes	6 Planes	10 Planes
0.4	4.4	6.7	9.1	11.5
0.6	5.2	8.2	11.2	14.5
0.8	6.0	9.6	13.3	17.5
1.0	6.5	10.5	14.5	20.5

• example of calculation for 4 Planes and ct=0.6 mm:

14.5% *((10.5-1.2)% / (20.5-1.2)%) + 1.2% = 8.2 %

 $(14.5\% * ((10.5-1.2)\% / (20.5-1.2)\%) + 4.0\% = 11.0\% \Leftrightarrow wt=1mm)$

Reminder: each plane include 2 Si layes (0.3 + 0.2 mm)

Exercise with protons going through steel

realistic (bpt) & (bppyt): 6 mm and 3.5 mm accordingly

- eta: (3. \div 5.) \simeq ($\tan(\theta)$: 120./1400. \div 10./1400.), phi: π
- Vertex: (0., 0., 0.) mm, P_p = 70 GeV , 10000 ev.

 $\sim 65~\%$ of MI for I-st Station position

Effect of MSC 10(6) Planes

eta: $(8.8 \div 11.4)$, phi: $0 \div 2 \pi$, vertex(0.,20.,0.), $P_p = 7$ TeV, 5000 ev., distance between I-st and last Station $2 \cdot bpul = 5.6 m$

Plots:

Y(X) - deviation of track from primary direction at z of Si plates(last step inside every Si media) for II-nd and III-rd Stations

For I-st Station: $\sigma_{deviation} \sim 0.001 \ \mu m$ For II-nd Station: $\sigma_d \sim 2.4(2.0) \ \mu m$ For III-rd Station: $\sigma_d \sim 5.5(4.5) \ \mu m$

Corresponding deviations for $2 \cdot bpul = 8.0 m$: $\sigma_{II} = 3.6(2.8)\mu m$, $\sigma_{III} = 7.9(6.3)\mu m$ (Using hits: $\sigma_{II} = 3.8\mu m$, $\sigma_{III} = 8.5\mu m$)

estimation of \perp uncertainty of IP position: $\sigma \sim 150(125) \ \mu m$

 $({\rm Z/z})^* \sqrt{(\Sigma(D_i)/n)}$

Summary

- The version of G4-simulation of FP420 is prepared (pure simulation: no digitization & reconstruction).
- The study of MI effects for different geometry parameters was presented.
- The influence of MSC on position resolution was estimated.
- The things to do:
- short term simulation:
 - implementation of more realistic geometry set up, materials, rotation matrices
 - NumberingScheme, production cuts
 - SensitiveDetector: class of SimHitsCollection \Longrightarrow studies with hits

SimHitsCollection provide input information for signal simulation

↓

long term - provide digitization & reconstruction to have complete MC:

- charge collection:
- SimHitsCollection: entrance and exit points, E_{dep}
- divide track segment into 10 μm long sub-sgm.
- take into account Landau fluctuations in thin material layers: assign a fraction of energy for each sub-sgm.
- drift in magnetic field (Lorentz angle)
- charge collected by every strip, a list of hit strips
- add the noise contribution
- convert the charge into an integer number(ADC digitization)
- strip zero suppression
- cluster(set of adjacent strips) finding algorithm
- precise hit position reconstruction
- track reconstruction