LAr calorimeter R&D for FCC-ee Status and plans

Brieuc François (CERN)
LAr Calo for FCC working meeting
Oct. 29th, 2020

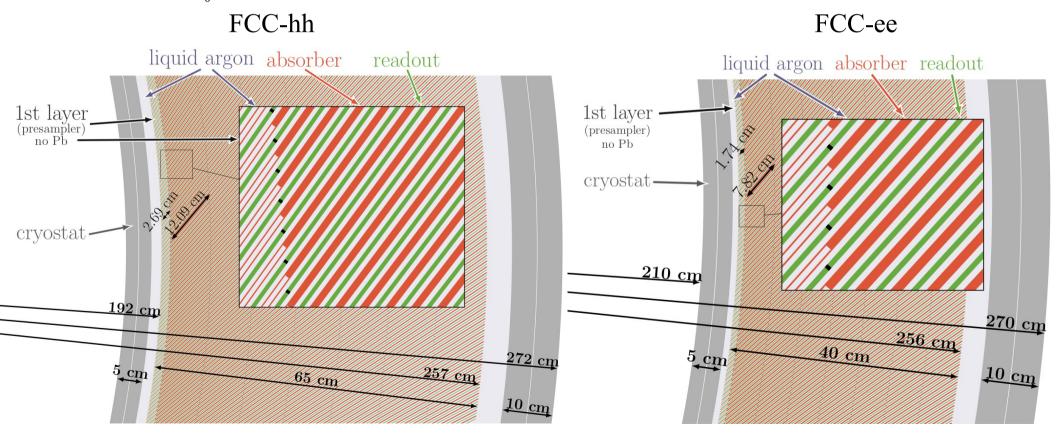
Introduction

- Resuming the work carried out by Marina
 - > Started beginning of October, still in the learning phase
 - > Apologize for the mistakes, mis-phrasing, trivial statements, ...
- Work organization
 - ~50% on the electrode PCB design and optimization
 - ► ~50% on physics related topics
 - Detector requirements and optimization of 'free' parameters from physics measurements
 - Probably start with 'simple' ECAL related key aspects of physics analyses (e.g. π^0 rejection)
 - Possibly move to a more thorough physics analysis later
 - Requires substantial FCCSW Full Sim developments beforehand
 - Clustering algorithms, physics object identification/particle flow, ...
 - Optimal detector specs can only be derived within a realistic global event reconstruction

Outline

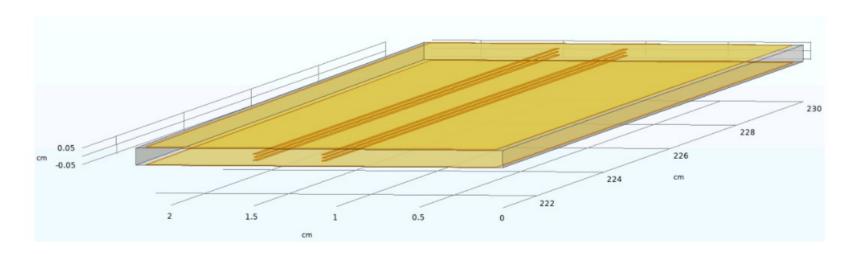
- FCC-ee LAr ECAL Geometry and FCCSW
- Update of the strategy regarding PCB design

Geometry in FCCSW


- Main geometry changes in FCC-ee w.r.t. FCC-hh
 - ► Bigger tracker \rightarrow inner cryostat radius pushed further (185 cm \rightarrow 210 cm)
 - ► Less energetic particles \rightarrow sensitive region shrunk (30 X₀ \rightarrow 22 X₀)
- New geometry already propagated to the FCCSW framework by Jana (thanks for the very nice documentation!)
 - Further modifications to align on the latest baseline scenario
 - > Go from 8 to 12 longitudinal layers in the readout segmentation
 - Fine-tuning
 - > Cryostat starts at 2.1 m instead of 2.06 m (leaves 10 cm between the end of the outer tracker and cryostat), 1 cm services after inner cryostat, 4 cm after, ...
 - > 'z' coverage: current 2.2 m (at 2.16 m from the beam pipe it results in an angular coverage of 27° on both sides of the radial direction)
 - Gap thickness of 1.2 mm instead of 1.8 mm
 - > This baseline scenario will anyway be optimize based on simulation studies
 - NB: need to update the sampling fractions/upstream material corrections and rederive the noise for most of the geometry modifications

Technical drawings

- New geometry is being implemented in the technical drawings (thanks Anna for the source code!)
 - > 1552 cells in total (abs-gap-readout-gap unit), 60 cm radial depth including cryostat → \sim 22 X₀ and 53 cells crossed by a straight trajectory at θ =90°

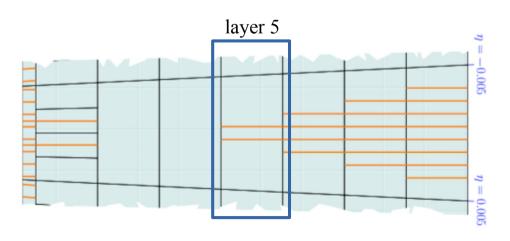


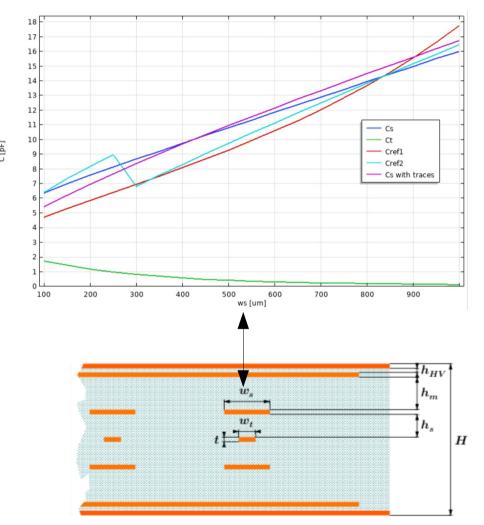
FCCSW development

- > Once the fine tuning of the baseline geometry is implemented in FCCSW, one can already start to do simple studies such as ECAL resolution as a function of granularity, absorber thickness, etc
- FCCSW development needed for further studies
 - Fix the topoClustering algorithm (so far only managed to run it with the FCC-hh geometry)
 - > Implement new clustering algorithms (e.g. CMS CLUE)
 - Implement a machine learning based π^0 identification algorithm
 - > ...
- Currently learning the FCCSW Full Sim framework to be able to contribute (thanks Valentin for the help!)
 - Will start with the migration of topoClustering to EDM4hep (probably needs some refactoring)
 - > Implies to also migrate all the input ingredients (G4CaloHits, CaloCells, calibration tools, etc.)

Electrode PCB design

Reminder

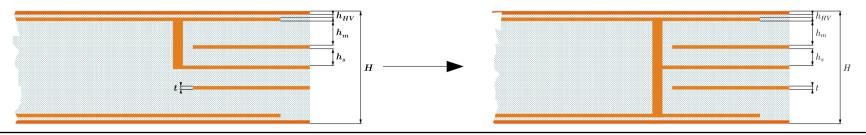



Marina implemented the PCB layer 5 geometry into COMSOL, based on Finite

Element Method (FEM)

Derived the capacitances as a function of the shield width and compared it to the analytical modeling used in FCC-hh studies

- Reasonable agreement, slightly higher capacitance observed with FEM
- Next steps: evaluate noise and cross-talk
- Work taken over by IJCLab (Orsay)



PCB Design

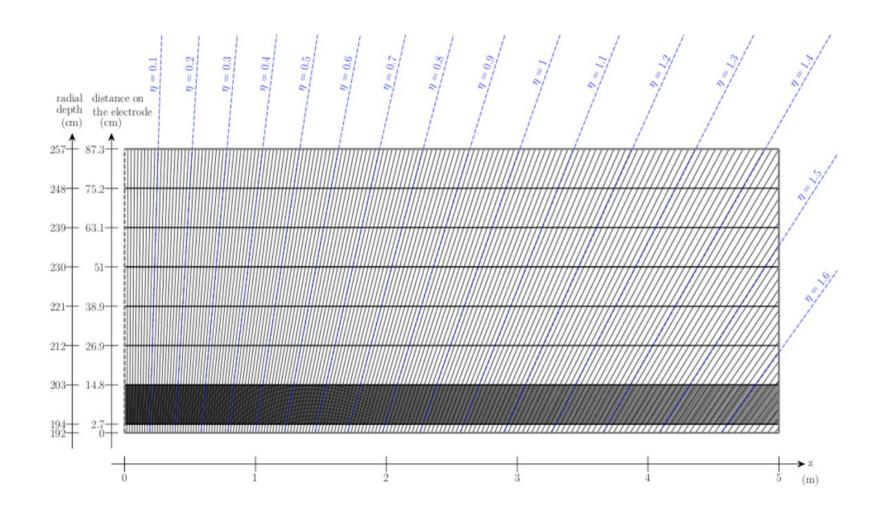
- Alternative/complementary approach: use **Cadence** Design Systems together with Sigrity
- Possible to perform the model implementation through the CERN PCB Design
 Office
 - Had a first chat with them two weeks ago
 - Will meet again coming Tuesday to launch the actual implementation of the model
 - Should be a matter of days/week (relatively simple PCB for them)
- Will allow cross validation together with the COMSOL model
- Will implement an updated version of the electrode for FCC-ee
 - More longitudinal layers (12 vs 8) and shorter length (62 cm)
 - One signal trace reads two signal pads

Summary

- > Trying to learn all these new topics, step by step
- Playing with the FCC-ee updated detector geometry and FCCSW in general (thanks to Jana, Anna and Valentin for their precious help)
- Update of the technical drawings for FCC-ee ongoing
- PCB modeling in COMSOL performed by IJCLab (Orsay) while we carry out the implementation in Cadence with the PCB Design Office
 - New version of the baseline design

Additional material

Master student project



- Master student starting with Christos L. (Edinburgh) on LAr Calo R&D studies
 - Need a short term task that would be useful for us in the long run
 - Propose to start with resolution studies as a function of the granularity
 - > Energy resolution w.r.t. incoming particle energy for different geometries
 - $ightharpoonup Z
 ightharpoonup e^+e^-$ invariant mass resolution for different detector geometries
 - Fixed Z mass (no Breit-Wigner to avoid convolution with detector resolution)
 - Maybe switch off ISR/FSR to have clean events
 - Possibly, also switch off the magnetic field to make things easier
 - More advanced studies (e.g. electron bremsstrahlung dressing, π^0 rejection, ...)
 - Use FCCSW Full Sim with FCC-edm, time scale does not allow to move to EDM4hep
 - Report has to be written in May

Full readout theta view

