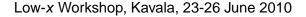
The Relation Good–Walker - Triple-Regge in Diffractive Excitation

Gösta Gustafson

Department of Theoretical Physics Lund University



Work in collaboration with Christoffer Flensburg (arXiv:1004.5502)

Content

- 1. Diffractive excitation often treated by two mechanisms:
 - a) Low mass: Good-Walker
 - b) High mass: Triple Regge

How are these related?

- 2. High mass diffractive excitation in Good-Walker picture
- 3. Bare pomeron in Good-Walker picture

Eikonal approximation

Diffraction and saturation more easily described in impact parameter space

Scattering driven by absorption into inelastic states i, with weights 2f;

Elastic amplitude $T = 1 - e^{-F}$, with $F = \sum f_i$

For a structureless projectile we find:

$$\left\{ \begin{array}{l} d\sigma_{tot}/d^2b \sim \langle 2T\rangle \\ \sigma_{el}/d^2b \sim \langle T\rangle^2 \\ \sigma_{inel}/d^2b \sim \langle 1-e^{-\sum 2f_i}\rangle = \sigma_{tot} - \sigma_{el} \end{array} \right.$$

Good - Walker

If the projectile has an internal structure, the mass eigenstates can differ from the eigenstates of diffraction

Diffractive eigenstates: Φ_n ; Eigenvalue: T_n

Mass eigenstates: $\Psi_k = \sum_n c_{kn} \Phi_n \ (\Psi_{in} = \Psi_1)$

Elastic amplitude: $\langle \Psi_1 | T | \Psi_1 \rangle = \sum c_{1n}^2 T_n = \langle T \rangle$

$$d\sigma_{\rm el}/d^2b\sim (\sum c_{1n}^2T_n)^2=\langle T
angle^2$$

Amplitude for diffractive transition to mass eigenstate Ψ_k :

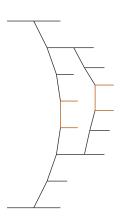
$$\langle \Psi_k | T | \Psi_1 \rangle = \sum_n c_{kn} T_n c_{1n}$$

$$d\sigma_{diff}/d^2b = \sum_k \langle \Psi_1 | T | \Psi_k \rangle \langle \Psi_k | T | \Psi_1 \rangle = \langle T^2 \rangle$$

Diffractive excitation determined by the fluctuations:

$$d\sigma_{diff ex}/d^2b = d\sigma_{diff} - d\sigma_{el} = \langle T^2 \rangle - \langle T \rangle^2$$

High energy collisions driven by parton-parton subcollisions (à la PYTHIA)



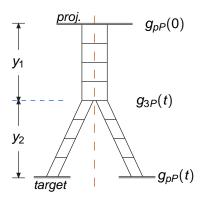
BFKL evolution

Multiple subcollisions

⇒ saturation

Diffractive cross sections

Triple-Regge

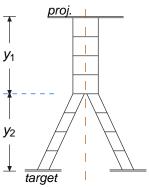


Traditionally fluctuations not taken into account

Reggeon parameters and couplings fitted to data

Diffractive cross sections

Good-Walker



BFKL: Large fluctuations (Mueller–Salam)

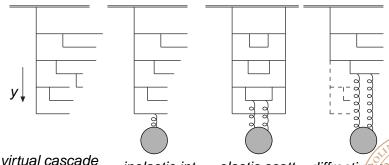
Can this reproduce the triple-regge result?

 $\langle\langle T \rangle_{targ}^2 \rangle_{proj}$ gives diffractive scattering with $M_X^2 < exp(y_1)$

Vary y_1 gives $d\sigma/dM_X^2$

Diffractive eigenstates

Parton cascades, which can come on shell through interaction with the target



inelastic int.

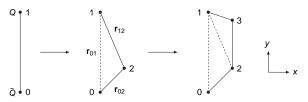
elastic scatt. diffractive exc.

Cf. Miettinen-Pumplin (1978), Hatta et al. (2006)¹

¹Hatta-lancu-Marquet-Soyez-Triantafyllopoulos

Dipole cascade models

Mueller Dipole Model: Formulation of LL BFKL in transverse coordinate space



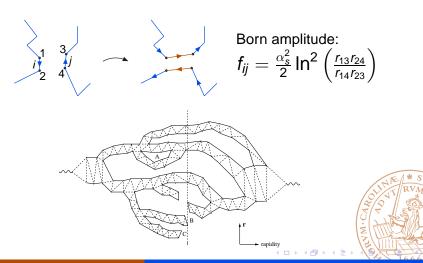
Emission probability:
$$\frac{d\mathcal{P}}{dy} = \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{r}_2 \frac{r_{01}^2}{r_{02}^2 r_{12}^2}$$

Color screening: Suppression of large dipoles

 \sim suppression of small k_{\perp} in BFKL

Dipole-dipole scattering

Single gluon exhange ⇒ Color reconnection



Lund Dipole Cascade model²

The Lund model is a generalization of Mueller's dipole model, with the following improvements:

- Include NLL BFKL effects
- Include Nonlinear effects in evolution
- Include Confinement effects

MC: DIPSY

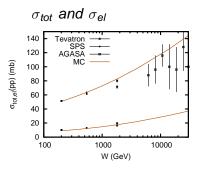
Initial state wavefunctions:

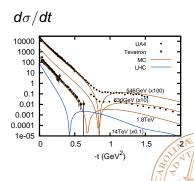
 γ^* : Given by perturbative QCD. $\Psi_{T,L}(r,z;Q^2)$

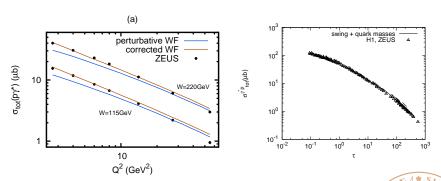
proton: Dipole triangle

²Avsar-Flensburg-GG-Lönnblad

Total and elastic cross sections



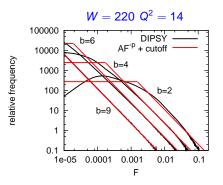




Satisfies geometric scaling

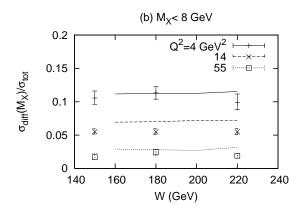
How large are the fluctuations?

$$\gamma^* p$$
: $\frac{dP}{dF} \approx A F^{-p}$ (with cutoff for small *F*-values) $\Rightarrow d\sigma_{diff.ex.}/d\sigma_{tot} \approx (1 - 1/2^{2-p})$



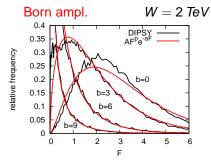
The power p is independent of b (but grows slowly with Q^2)

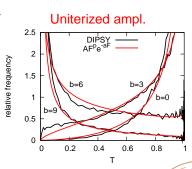
Example $M_X < 8 \text{ GeV}$, $Q^2 = 4, 14, 55 \text{ GeV}^2$.



PP: Born approximation: large fluctuations

$$rac{dP}{dF} pprox A \, F^p \, e^{-aF}$$



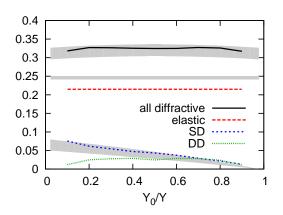


a is independent of b. $d\sigma_{d.ex.}/d\sigma_{tot}|_{Born}=1/2a\sim 1/3$

 $\langle F \rangle$ is large \Rightarrow Unitarity effects important

 \sim enhanced diagrams in triple-regge formalism

pp 1.8 TeV

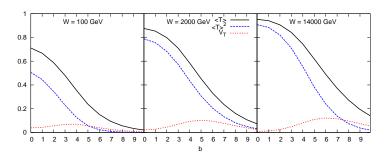


Saturation⇒ Factorization breaking in diffractive excitation

Impact parameter profile

Central collisions: $\langle T \rangle$ large \Rightarrow Fluctuations small

Peripheral collisions: $\langle T \rangle$ small \Rightarrow Fluctuations small

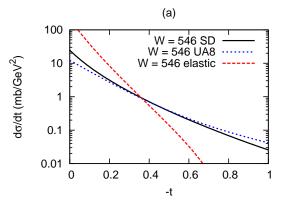


Largest fluctuations when $\langle F \rangle \sim$ 1 and $\langle T \rangle \sim$ 0.5

Circular ring expanding to larger radius at higher energy

t-dependence

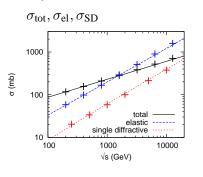
Single diffractive and elastic cross sections

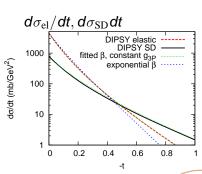


Agrees with fit to UA8 data

Triple-Regge parameters

BARE pomeron without saturation effects





Triple-Regge fit with a single pomeron pole

$$\alpha(0) = 1.21, \quad \alpha' = 0.2 \,\text{GeV}^{-2}$$

$$g_{\rm DP}(t) = (5.6\,{\rm GeV}^{-1})\,{\rm e}^{1.9t}, \ g_{\rm 3P}(t) = 0.31\,{\rm GeV}^{-1}$$

Compare with triple-regge fits:

$$\alpha(0) = 1.21, \quad \alpha' = 0.2 \,\text{GeV}^{-2}$$
 $g_{\text{DP}}(t) = (5.6 \,\text{GeV}^{-1}) \,e^{1.9t}, \quad g_{\text{3P}}(t) = 0.31 \,\text{GeV}^{-1}$

Ryskin *et al.*:
$$\alpha(0) = 1.3$$
, $\alpha' \le 0.05 \,\text{GeV}^{-2}$

Kaidalov *et al.*:
$$\alpha(0) = 1.12$$
, $\alpha' = 0.22 \,\text{GeV}^{-2}$

Goulianos:
$$\alpha(0) = 1.21, \ \alpha' = 0.2 \,\text{GeV}^{-2}$$

Note:

Fit \sim single pomeron pole (not a cut)

 $g_{\rm 3P}$: magnitude \sim pert. QCD estimate by Bartels-Ryskin-Vacca ($\pi g_{\rm 3P} \sim 0.2-1.7\,{\rm GeV}^{-1}$)

Summary

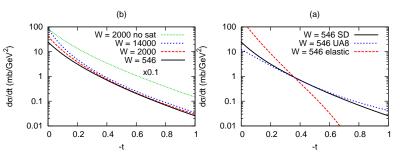
- In the eikonal approximation diffractive excitation is directly determined by the <u>fluctuations</u> in the scattering process
- The fluctuations in BFKL evolution are large
- Implemented in the Lund Dipole Cascade Model they reproduce the triple-pomeron formula for diffractive excitation to small and large masses in γ^*p and pp collisions, with no extra parameters
- In pp the fluctuations are large for the Born amplitudes, but strongly suppressed by unitarity above ~ 20 GeV ⇒ Factorization breaking
- The model result gives a bare pomeron, which is a simple pole with $\alpha(0) = 1.21$ and $\alpha' = 0.2 \, \text{GeV}^{-1}$ and with $g_{3P}(t)$ approximately constant $= 0.31 \, \text{GeV}$ (With saturation the cross section grows $\sim s^{0.1}$ up to $\sim 50 \, \text{TeV}$).

Extra slides

Triple-pomeron formulae:

$$\begin{array}{rcl} \sigma_{\rm tot} & = & \beta^2(0) s^{\alpha(0)-1}, \\ \frac{d\sigma_{\rm el}}{dt} & = & \frac{1}{16\pi} \beta^4(t) s^{2(\alpha(t)-1)}, \\ M_{\rm X}^2 \frac{d\sigma_{\rm SD}}{dt d(M_{\rm X}^2)} & = & \frac{1}{16\pi} \beta^2(t) \beta(0) g_{\rm 3P}(t) \left(\frac{s}{M_{\rm X}^2}\right)^{2(\alpha(t)-1)} \left(M_{\rm X}^2\right)^{\alpha(0)-1}. \\ \beta(t) & \equiv & g_{pP}(t) \end{array}$$

Energy dependence and effect of saturation on $d\sigma/dt$



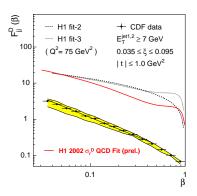
Energy dependence, and result without saturation at 2 TeV

546 GeV compared with a fit to UA8 data, and with elastic scattering

24

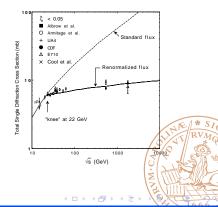
Factorization breaking

Difference between pp and γ^*p



Cf. Goulianos' saturation of pomeron flux

pp scattering



pp scattering

 $\langle T \rangle$ and V_T for the simple parametrization $\frac{dP}{dF} \approx AF^{\rho}e^{-aF}$

$$\langle T \rangle = 1 - (\frac{a}{a+1})^{p+1} = 1 - (\frac{a}{a+1})^{a\langle F \rangle} \to 1 \text{ when } \langle F \rangle \to \infty$$

$$V_T = (\frac{a}{a+2})^{p+1} - (\frac{a}{a+1})^{2p+2} \to 0 \text{ when } \langle F \rangle \to \infty$$

Diffractive final states

Coherence effects important for subtracting el. scatt.

$$d\sigma_n = c_n^2 \left(\sum_m d_m^2 t_{nm} - \langle t \rangle \right)^2$$

$$\langle \textit{t} \rangle = \sum_{\textit{n}} \sum_{\textit{m}} \textit{c}_{\textit{n}}^{2} \textit{d}_{\textit{m}}^{2} \textit{t}_{\textit{nm}}$$

Toy model

(Abelian emissions; no saturation)

$$\Psi_{in} = \prod_{i} (\alpha_i + \beta_i) |0\rangle$$

parton *i* produced with prob. $|\beta_i|^2$, interacts with weight f_i

Diff. exc. states:

$$\begin{split} \Psi_j &= (-\beta_j + \alpha_j) \prod_{i \neq j} (\alpha_i + \beta_i) |0\rangle \\ d\sigma_{el} &\sim (\sum_i \beta_i^2 f_i)^2 \end{split}$$

$$d\sigma_j \sim lpha_j^2 eta_j^2 f_j^2$$

