

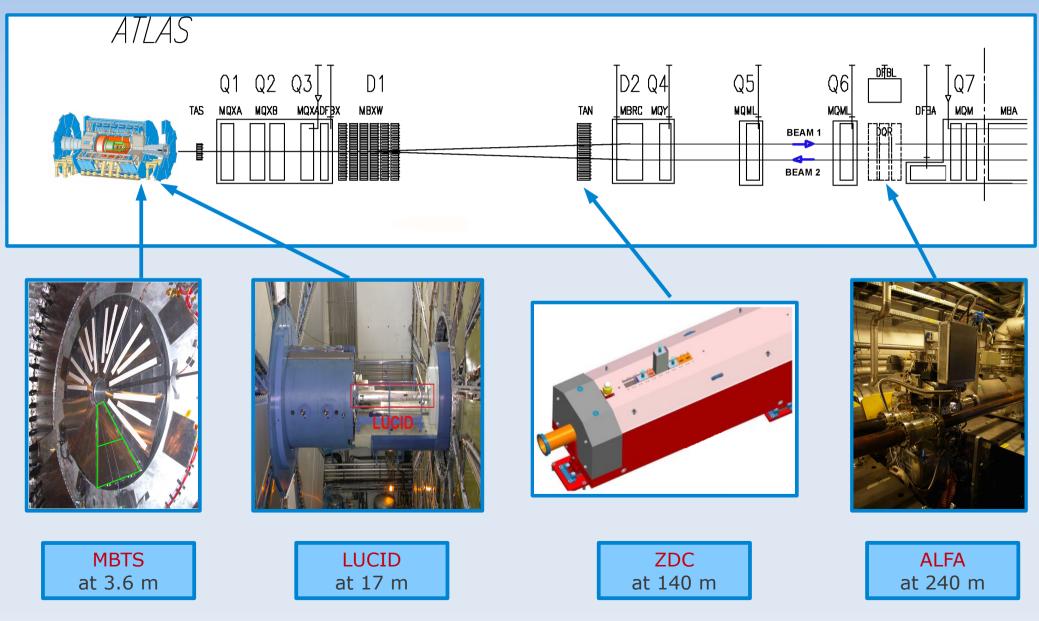
ATLAS Forward Physics Program

M. Heller On behalf of the ATLAS collaboration

Laboratoire de l'accélérateur linéaire Orsay, IN2P3/CNRS, Univ Paris-Sud

Workshop Low x KAVALA, GREECE, June 23-27 2010

Outline

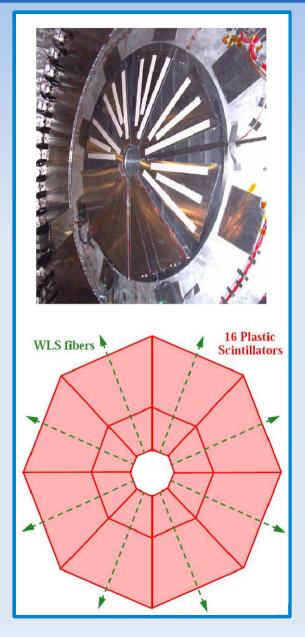


Forward physics and strategy in ATLAS

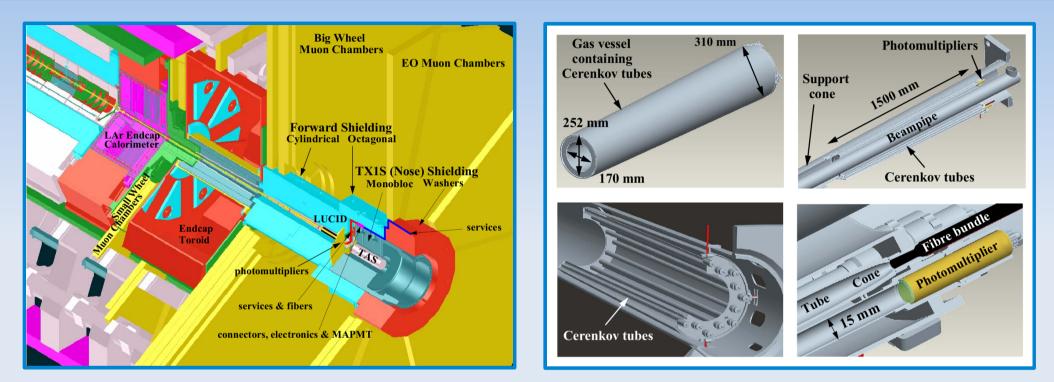
Future plans: AFP

First results on luminosity measurements

ATLAS forward detectors

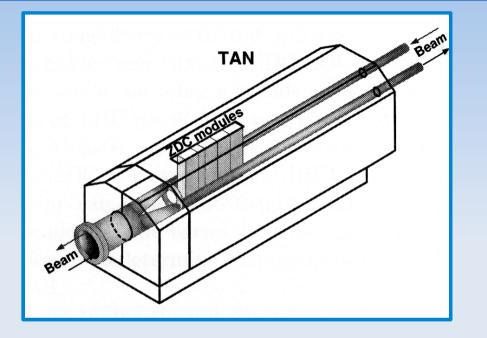

23-27 June 2010

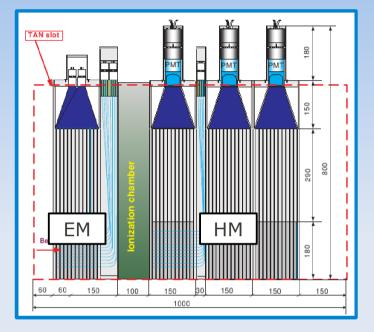
M. Heller, Low x, Kavala


Minimum Bias Trigger Scintillator (MBTS)

- 32 (16+16) wedge shaped plastic scintillators connected to PMTs
- Two segments in η
- $\Delta \Phi = \pi/4, 2.1 < |\eta| < 3.8$

- Trigger on Minimum Bias events
- Vetos halo and beam gas events
- Provide LVL1 trigger information

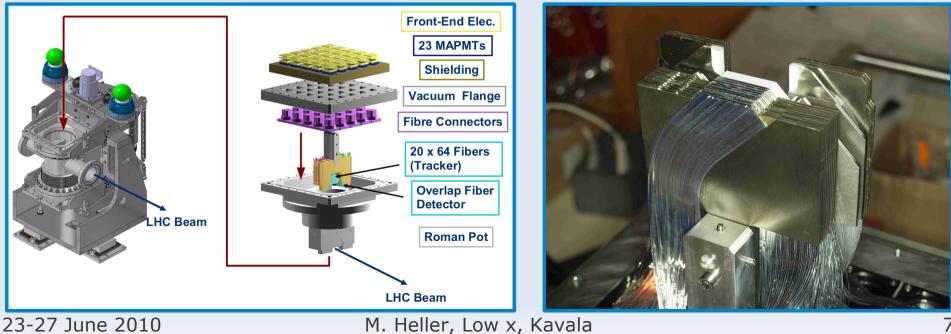

LUminosity measurement using Cherenkov Integrating Detector (LUCID)

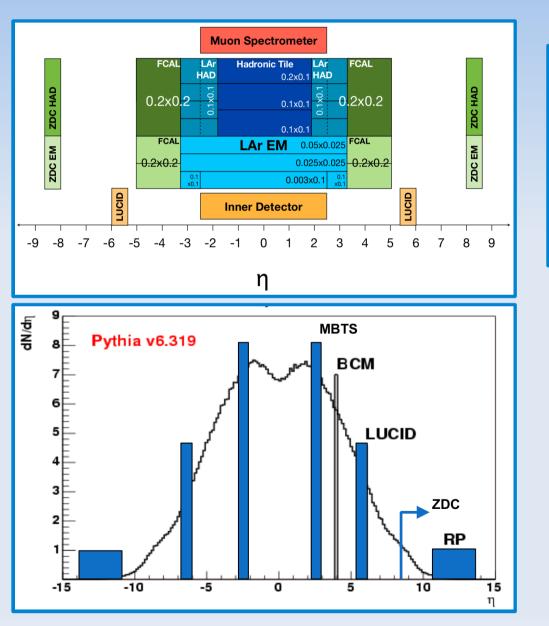


- Online Luminosity Monitor, Interaction trigger (low luminosity)
- Array of gaseous Cherenkov detectors
- Sensitive to charged particles pointing to the primary pp collisions

Rate of p-p interactions seen by LUCID
$$M$$
. Heller, Low x, Kavala $R_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} = \mu_{LUCID} \cdot f_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Instantaneous Luminosity $F_{pp} \cdot \varepsilon_{LUCID} \cdot E_{pp} \cdot \varepsilon_{LUCID} \cdot \varepsilon_{LUCID}$

Zero Degree Calorimeter (ZDC)

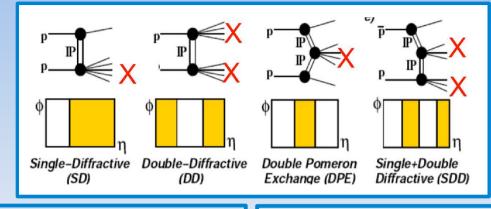



- The ZDC will measure production of **neutral particles** in the forward direction in heavy ions and p-p collisions
- 1 electromagnetic calorimeter (not yet installed) and 3 hadronic calorimeter modules
- Tungsten/Quartz calorimeter covering $|\eta| > 8.3$ for neutrals
 - Quartz strips for energy measurements
 - Horizontal rods for coordinate measurements

Absolute Luminosity For ATLAS (ALFA)

- Measure σ_{tot} and absolute luminosity with a precision of 2-3%
- Two roman pot stations on each side of the ATLAS IP. Each station is made of an upper and a lower detector
- The detectors are scintillating fiber trackers
- Need high-β* optics and low luminosity runs (10²⁷ cm⁻² s⁻¹)
- One station installed, 3 others will be by Xmas 2010

ATLAS pseudo-rapidity coverage



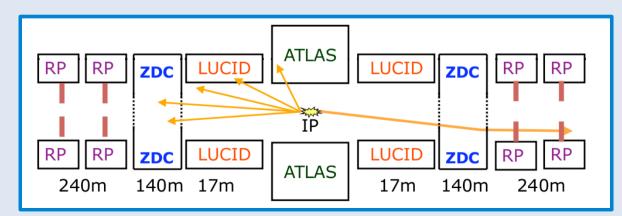
Main detector

 Inner detector 	η < 2.5
 EM calorimeters 	η < 3.2
Hadronic calorimeters	η < 4.9
• Muon spectromater	η < 2.7

Forward detectors			
MBTSLUCIDZDCALFA	2.1 < 5.6 < 10.6 <	η η	

Forward physics to be studied

TOPICS


- Soft diffraction
- <u>Hard Diffraction</u>
- <u>Central Exclusive Production</u> (CEP)
- <u>Gaps between jets</u>
- <u>Elastic scattering</u>


STRATEGIES

- Rapidity Gaps in different η regions and with different configurations and/or measurement of forward protons :
 - Forward regions for Single Diffractive (SD), double diffractive and Central Exclusive Production (CEP)
 - Central calorimeter (jet-jet, DPE)
- Requirements :
 - Dedicated detectors
 - Low noise in detectors
 - No pile-up

Soft single/double diffraction

- Low *t*-process where color singlet is exchanged between the two protons, and one or the two protons break up into a dissociative system
- Large cross sections at LHC :
 - $\sigma_{_{SD}} \sim 12 mb$
 - σ_{DD} ~ 7 mb
- Diffractive events can be tagged by identifying a rapidity gap between :
 - outgoing proton and dissociative system in SD
 - the two dissociative systems in DD

23-27 June 2010

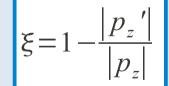
Soft single/double diffraction

Using central detector, FCAL, LUCID and the ZDC

Rapidity gap in the central detector, LUCID and ZDC used to infer an outgoing proton
 Diffractive mass, M_x, of the dissociative system measured and the fractional momentum loss of the (intact) proton defined:

$$\xi = \frac{M_X^2}{s}$$

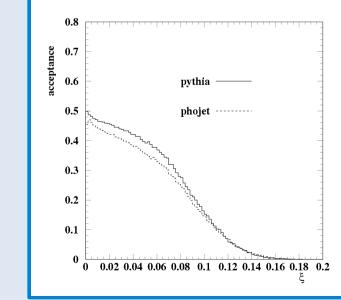
• M_{χ} measured using calorimeter clusters and tracking information


• The aim is to reconstruct ξ on an event-by-event basis

Expect to collect ~ 1M events in two weeks at L = 10³¹ cm⁻² s⁻¹

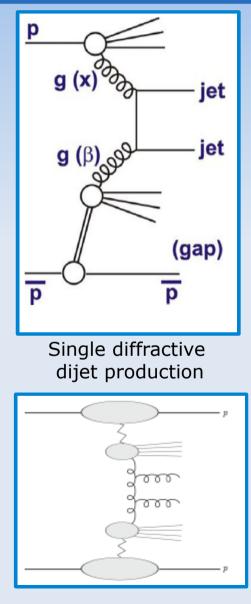
Using the ALFA detector

 ALFA as a good acceptance for SD events in dedicated runs :


- 50% acceptance for $\xi \sim 0.01$
- 10% acceptance for $\xi \sim 0.1$

Accuracy on fractional momentum loss:

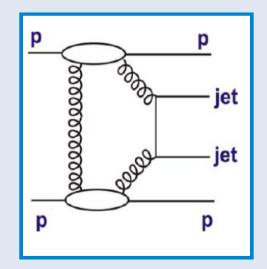
~ 8% for $\xi \sim 0.01$ ~ 2% for $\xi \sim 0.1$


• Expect 1.2-1.8M events in 100 hrs at $L = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$

Diffractive dijets production

Experimental signal: Hard scattering events (Jets, W,...) with gap on one side of the detector

- Goal of the measurement :
 - Diffractive structure functions (dPDFs)
 - Factorization breaking :
 - R(SD/ND)
 - R(DPE/SD)
- Trigger using single jet triggers
 - Looking into LUCID, ZDC and MBTS for gap requirement
- Expect a few thousand SD di-jet events in 100 pb⁻¹ with E_T>20 GeV (after trigger prescale and gap requirement)
- Expect approximatively 10 DPE events in the same kinematic region

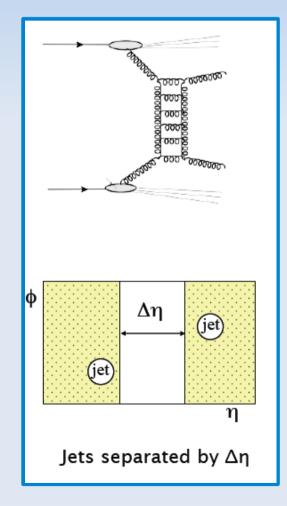

Central Exclusive dijet Production

Experimental signal: Two high p_{τ} jets and no extra hadronic activity. Gaps between the jets and protons

- **Rapidity gaps** between central dijet system ($|\eta| < 2.5$) and outgoing protons
 - No hadronic activity must be seen in FCAL, LUCID and 7DC
- Protons are scattered through very small angles, not detected by ATLAS.
- Expect CEP rate to be much larger than DPE with such criteria
- Measurement of DPE/CEP di-jet production at 14 TeV : To constrain the theoretical model by comparing with
 - **CDF** measurements
 - To understand the structure of diffractive exchange by comparision with prediction from electron-proton data

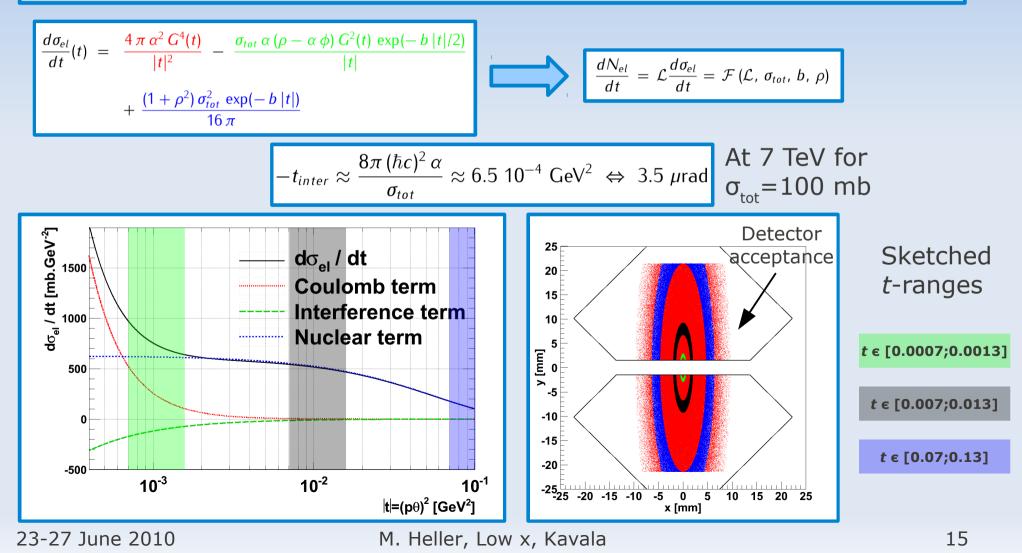
Expect a few hundred CEP events after trigger and analysis cuts with $E_T > 20$ GeV in 20 pb⁻¹ of data

See Paolo Francavilla's talk for iet studies

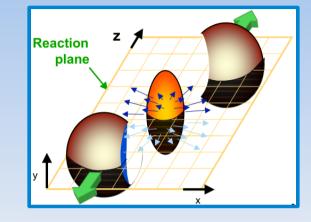

CEP

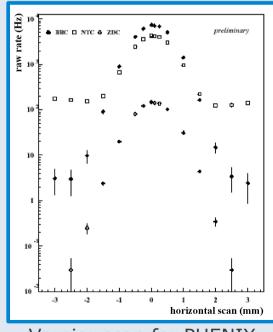
Gaps between jets

Experimental signal : Two high p_T jets separated in the detector by a large pseudo-rapidity gap ($\Delta \eta > 3$)


- Di-jet production via colour singlet exchange
- Observable of interest is the gap-fraction, i.e. the fraction of events with little activity between the jets
- \bullet ATLAS can make an improved measurement with increased $\rm E_{\rm CM}$ and available phase space
- Measurement up to gap-fraction $\Delta \eta \sim 9$, 9.5

Measurements should be possible with 10 pb⁻¹ of data


Elastic scattering (ALFA)


Measurement of the differential elastic cross section at very low *t* to be sensitive to the Coulomb and the interference region provides very good precision on absolute luminosity and total cross section measurements

Zero Degree Calorimeter (ZDC)

- Will perform studies in both heavy ions and pp runs by measuring the production of neutral particles at 0° (n, γ, π)
- Direction and amplitude of the impact parameter
- Measures centrality
- Minimum Bias trigger
- Rapidity gap trigger veto
- Luminosity measurements :
 - \bullet during heavy ions runs with a precision better than 5 %
 - during p-p runs, the ZDC coincidence is a background free luminosity monitor

Future : ATLAS Forward Physics program (AFP)

• At high luminosity, pile-up events will fill in the gaps, need to tag the very forward protons

- New detectors at ±220m and ±420m
- Use fast timing to reduce the background
- Good acceptance and mass resolution
- <u>Tracking system</u> to detect and reconstruct the 2 leading protons (1 μ rad angular resolution) \rightarrow 3D Si detector
- <u>Timing system</u> (10-20 ps resolution) to identify the primary vertex \rightarrow Cerenkov photon detectors
- <u>Beam proximity</u> \rightarrow Radiation hardness

gastof™

MCP-PM

30 cm

10 cm

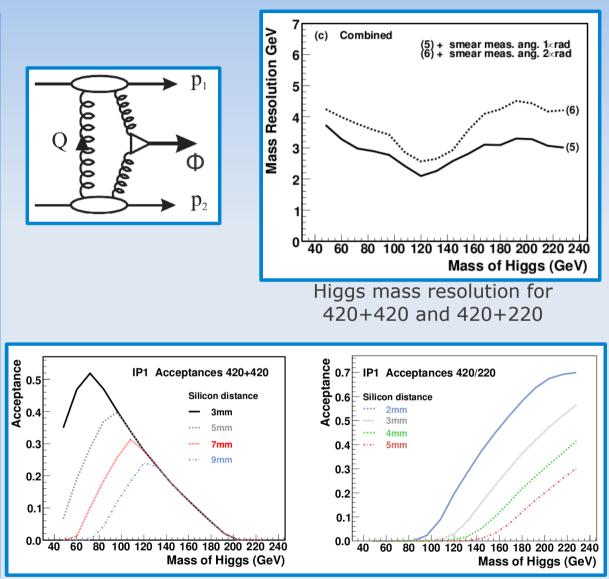
Lens

Proto

Future : ATLAS Forward Physics program (AFP)

Processes pp \rightarrow **p**+**Φ**+**p**

Protons remain intact, scattered with very small angles
All the momentum lost by the protons goes to the production of the central system Φ


Goal: Measure the longitudinal momentum of the outgoing protons

• CEP Higgs Boson Studies (See Marek Tasevski and Rafal Staszewski)

 Higgs mass, quantum numbers, discovery in certain regions of MSSM/NMSSM

Slepton pair production

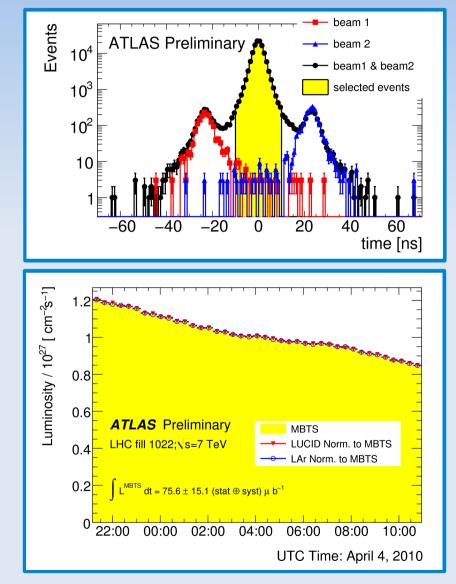
 Gluino pair production for split-SUSY models

More details in : 2009 JINST 4 T10001

Instantaneaous luminosity measurement in ATLAS

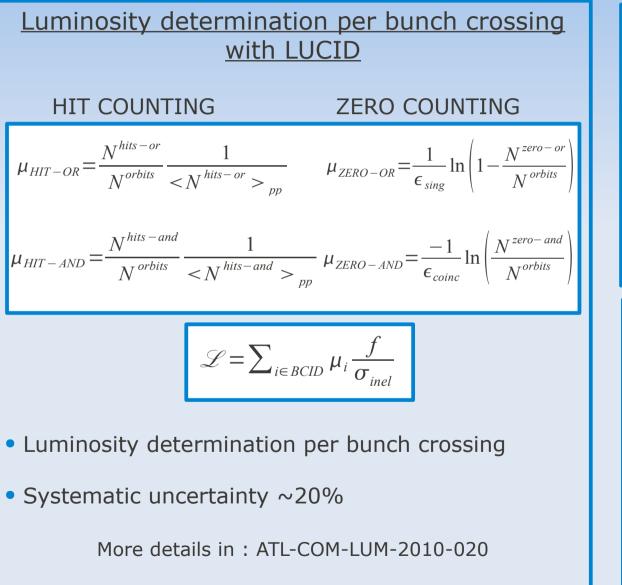
 Based on instantaneous relative luminosity measurements normalized using calibration constants (MC or beam parameters)

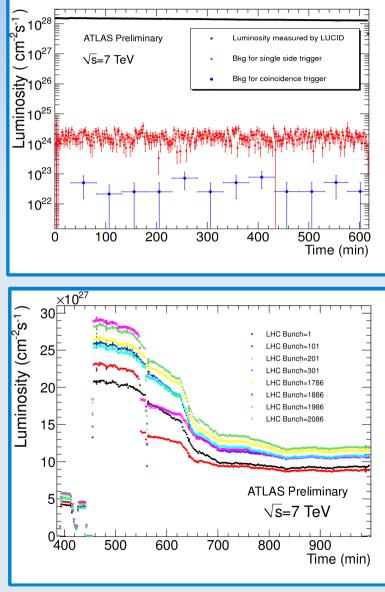
• Overall method:


$$\int \mathscr{L} dt = \frac{\mu f}{\sigma_{vis}}$$

 Method applied with MBTS, LUCID and LAr EndCap, chargeg particle event counting

 Cross section used to normalize the measurements is 71.5 mb (ND, SD, DD from Pythia)


• Systematic uncertainties (~20%) are dominated by differences observed between PYTHIA and PHOJET prediction


• Systematics will be reduced with VdM scan calibration (~5-10 %)

More details in : ATL-COM-LUM-2010-002

First luminosity measurement with LUCID

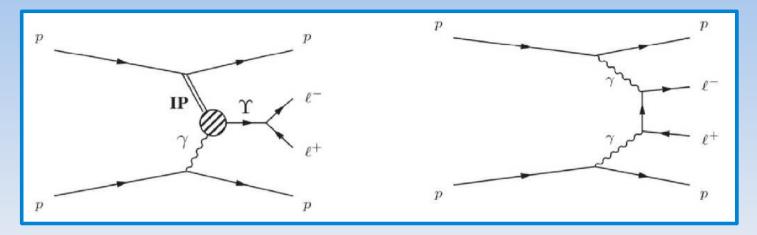
Conclusion

- ATLAS has variety of forward detectors: MBTS, LUCID, ZDC, ALFA
- At low luminosity several diffractive topics can be studied
- Handshake with machine for luminosity optimisation and measurement

• Measurements with up to 10 pb⁻¹:

- Soft single and double diffraction
- Gaps between jets

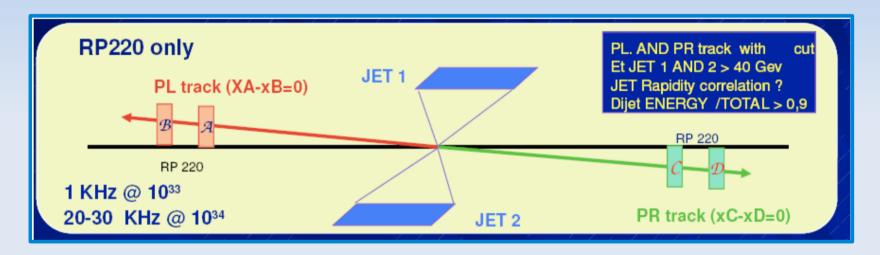
• Measurements with up to 200 pb⁻¹:


- Exclusive di-jet production
- Single diffractive di-jet production

• Prospects after 2010 :

- Single diffraction and elastic scattering with ALFA
- New physics studies if AFP is installed

Photon induced lepton pair production


- Exclusive dilepton production :
 - two isolated leptons back-to-back
 - gaps in forward region
 - exclusive vertex (no other tracks than from leptons)
- Processes :
 - Photoproduction-lepton pairs through J/ψ and Y resonnances
 - Two photon production \rightarrow non-resonant lepton pairs from $\gamma\gamma \rightarrow l^+l^-$

Simulation predict several hundreds two-photon and Upsilon events in the di-muon channel selection for 100 pb⁻¹

AFP trigger

•Trigger scheme (LVL1 + HLT) :

• LVL1 : high p_t in the central region + signal at both 220 m stations

Quoted latency for LVL1 trigger : 1921 ns (with some uncertainties)
Large LVL1 bandwidth (~30%) @ 10³⁴ cm⁻²s⁻¹