Soft-gluon rescattering in diffractive DIS

Roman Pasechnik

Uppsala U.

In collaboration with

Prof. Rikard Enberg and Prof. Gunnar Ingelman

Low x Meeting, 24 June, Kavala, Greece

Diffractive Deep Inelastic Scattering: motivation

✓ The success of Soft Color Interaction (SCI) model (Edin, Ingelman, Rathsman'97)

- Soft interactions among the final state partons and proton remnants (=> proton color field) at small momentum transfers < 1 GeV
- Hard pQCD part (small distances) is not affected by soft interactions (large distances)
- Single parameter probability for soft colour-anticolour (gluon) exchange
- Single model describing all final states: both diffractive and nondiffractive

Soft Colour Interaction model (SCI)

Add-on to Lund Monte Carlo's LEPTO (ep) and PYTHIA ($p\bar{p}$)

 $\begin{array}{cccc} \mathsf{ME} + \mathsf{DGLAP} \; \mathsf{PS} > Q_0^2 & \to & \mathsf{SCI} \; \mathsf{model} & \to & \mathsf{String} \; \mathsf{hadronisation} \sim \Lambda \\ \mathsf{colour} \; \mathsf{ordered} \; \mathsf{parton} \; \mathsf{state} & & \mathsf{rearranged} \; \mathsf{colour} \; \mathsf{order} & & \mathsf{modified} \; \mathsf{final} \; \mathsf{state} \end{array}$

Size Δy_{max} of largest gap in DIS events

 $SCI \Rightarrow plateau \text{ in } \Delta y_{max}$ characteristic for diffraction

Small parameter sensitivity -P = 0.5 $\cdots P = 0.1$

Gap-size is infrared sensitive observable !

 $\begin{array}{l} \mbox{Large gaps at parton level} \\ \mbox{normally string across} \rightarrow \mbox{hadrons fill up} \\ \mbox{SCI} \rightarrow \mbox{new string topologies, some with gaps} \end{array}$

Diffractive DIS at HERA

QCD rescattering theory

QCD rescattering model

hard soft é' hadrons q $X (M_x)$ gap Largest Gap in $g(x_P, \mu_{\text{hard}}^2)$ $g(x', \mu_{\text{soft}}^2)$ ğg Event $\overline{\mathbf{p}}$ p $Y (M_{y})$ Soft part: Hard part Soft gluons cannot resolve quarks dynamically \rightarrow but color-screening (octet) conventional they always couple to quark (small distance) multigluon exchange current! (large distance)

Diffractive DIS at HERA: Final State Interactions in the dipole picture

Invariant mass of X system and c.m.s energy

Working domain of interest:

$$M_X^2 = \frac{1-\beta}{\beta}Q^2, \quad W^2 \simeq \frac{Q^2}{x_P\beta}, \quad x_P \ll 1, \quad M_X \ll W \quad |t| \ll Q^2, \, M_X^2 \quad x' \ll x_P$$

$$\varepsilon^2 = z(1-z)Q^2 + m_q^2, \quad k_\perp^2 = z(1-z)M_X^2 - m_q^2$$

The hard QCD factorization scale = quark virtuality!

- 0

$$\mu_F^2 = k_\perp^2 + \varepsilon^2 = z(1-z)\frac{Q^2}{\beta}$$

Unintegrated gluon density

Off-diagonal UGDF

$$\begin{array}{c} \overbrace{C_F \alpha_s / \pi}^{\text{off}} & \overbrace{f_g^{\text{off}}(x_P, x', \Delta_{\perp}^2, \Delta_{\perp}^2, \Delta_{\perp}^2, \mu_F^2)}^{\text{off}} & \overbrace{\mathcal{F}_g^{\text{off}} \simeq \sqrt{\mathcal{F}_g(x_P, \Delta_{\perp}^2, \mu_F^2) \mathcal{F}_g(x', \Delta_{\perp}'^2, \mu_{\text{soft}}^2)}}_{\Delta_{\perp}^2} \equiv \mathcal{F}(x, \Delta_{\perp}^2) \to \text{const}, \ \Delta_{\perp}^2 \to 0
\end{array}$$

In the impact parameter space:

 $\begin{aligned} \mathcal{V}(\mathbf{b},\mathbf{r}) &= \frac{1}{\alpha_s(\mu_{\text{soft}}^2)} \int \frac{d^2 \Delta_\perp}{(2\pi)^2} \sqrt{x_P} \,\mathcal{F}_g^{\text{off}} \\ &\times \left\{ e^{-i\mathbf{r}\boldsymbol{\Delta}_\perp} - e^{i\mathbf{r}\boldsymbol{\Delta}_\perp} \right\} e^{i\mathbf{b}\boldsymbol{\Delta}_\perp}. \end{aligned}$

Gaussian Ansatz

Analytic coupling at the soft scale

 $\alpha_{\rm s}^{\rm soft} = \mathcal{A}_1(\Lambda_{\rm OCD}) \simeq 0.7$

$$\sqrt{x_P} \mathcal{F}_g^{\text{off}} \simeq \sqrt{x_P g(x_P, \mu_F^2) \, x' g(x', \mu_{\text{soft}}^2)} \, f_G(\Delta_\perp^2),$$
$$f_G(\Delta_\perp^2) = 1/(2\pi\rho_0^2) \, \exp\left(-\Delta_\perp^2/2\rho_0^2\right),$$

Soft hardronic scale – transverse proton radius

 $r_p \sim 1/\rho_0$

Diffractive slope

 $\sim \exp(B_D t)$ $B_D = 1/\rho_0^2 \simeq 6.9 \pm 0.2 \text{ GeV}^2$ $\rho_0 \simeq 380 \text{ MeV}$

Hard-soft factorization scheme

✓ The total amplitude

1

loop integration + cutting rules

$$M(\delta) \sim \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \cdot M^{hard}(\mathbf{\Delta}_{\perp}) \cdot M^{soft}(\mathbf{\delta} - \mathbf{\Delta}_{\perp}) \qquad \delta \equiv \sqrt{-t} = |\mathbf{\Delta}_{\perp} + \mathbf{\Delta}_{\perp}'$$

to the impact parameter representation \rightarrow

$$\left[M(\delta) \sim \int d^2 b e^{-i\boldsymbol{\delta}\mathbf{b}} \hat{M}^{hard}(\mathbf{b}) \cdot \hat{M}^{soft}(\mathbf{b})\right]$$

factorisation of the b-dependence

Factorization condition in the impact parameter space

$$M_{L,T}^{hard}(\Delta_{\perp}, k_{\perp}') = \begin{pmatrix} \Delta_{\perp} & \Delta_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp}' \\ & M_{L,T}^{hard}(\Delta_{\perp}, k_{\perp}') = \begin{pmatrix} \Delta_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp}' \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} & \lambda_{\perp} \\ & \lambda_{\perp} & \lambda_{\perp}$$

Soft gluon "exponentiation"

Soft gluon exchanges generate only the phase shifts – to be resummed to all orders!

Fourier transform \rightarrow

 $e^{-i\mathbf{r}\mathbf{k}_{\perp}'}\hat{M}_{1}^{soft} = e^{-i\mathbf{r}\mathbf{k}_{\perp}} \mathcal{A} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r}),$ $e^{-i\mathbf{r}\mathbf{k}_{\perp}'}\hat{M}_{2}^{soft} = e^{-i\mathbf{r}\mathbf{k}_{\perp}} \frac{\mathcal{A}^{2} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r})^{2}}{2!}, \qquad \cdots \qquad \underbrace{e^{-i\mathbf{r}\mathbf{k}_{\perp}'}\hat{M}^{soft}(\mathbf{b}, \mathbf{r}) = -e^{-i\mathbf{r}\mathbf{k}_{\perp}} \left(1 - e^{\mathcal{A} \cdot \mathcal{W}(\mathbf{b}, \mathbf{r})}\right)}_{\mathcal{A} = ig_{s}^{2}C_{F}/2} \quad \mathcal{W}(\mathbf{b}, \mathbf{r}) = \frac{1}{2\pi} \ln \frac{|\mathbf{b} - \mathbf{r}|}{|\mathbf{b}|}$

Inspired by Brodsky et al, PRD65, 114025 (2002)

Gluonic contribution @ large M_{χ}

Gluon radiated from "hard" gluon is far away in *p*-space from $q\overline{q}$ \rightarrow leading contribution to large M_{χ}

 \rightarrow Altarelli-Parisi splitting $\otimes q\overline{q}$ -dipole \otimes multiple gluon exchange

$$x_P F_{q\bar{q}g}^{D(4)} \simeq \frac{1}{N_c^2} \int \frac{dt_g dz_g}{t_g + m_g^2} P_{gg}(z_g) \frac{\alpha_s(t_g)}{2\pi} x_P F_{q\bar{q}}^{D(4)}$$

Diffractive structure function: results

Data are given in terms of the reduced cross section

 $\sqrt{s} = 318 \text{ GeV}$

$$\begin{split} x_P \sigma_r^{D(3)} &= x_P F_{q\bar{q},T}^{D(3)} + \frac{2 - 2y}{2 - 2y + y^2} \, x_P F_{q\bar{q},L}^{D(3)} + x_P F_{q\bar{q}g}^{D(3)} \qquad y = Q^2 / (sx_B) \leq 1 \\ x_P F_L^{D(4)} &= \mathcal{S} \, Q^4 M_X^2 \int_{z_{min}}^{\frac{1}{2}} dz (1 - 2z) \, z^2 (1 - z)^2 |J_L|^2 \end{split}$$
wark dipole contribution:

Q

$$x_P F_T^{D(4)} = 2S Q^4 \int_{z_{min}}^{\frac{1}{2}} dz (1 - 2z) \left\{ (1 - z)^2 + z^2 \right\} |J_T|^2$$

Amplitudes:

$$\begin{split} \mathcal{J}_{L} &= i\alpha_{s}(\mu_{F}^{2})\int d^{2}\mathbf{r}d^{2}\mathbf{b}\,e^{-i\boldsymbol{\delta}\mathbf{b}}e^{-i\mathbf{r}\mathbf{k}_{\perp}}\,K_{0}(\varepsilon r) \\ &\quad \times \mathcal{V}(\mathbf{b},\mathbf{r})\Big[1-e^{\mathcal{A}\mathcal{W}}\Big], \\ \mathcal{J}_{T} &= i\alpha_{s}(\mu_{F}^{2})\int d^{2}\mathbf{r}d^{2}\mathbf{b}\,e^{-i\boldsymbol{\delta}\mathbf{b}}e^{-i\mathbf{r}\mathbf{k}_{\perp}}\,\varepsilon K_{1}(\varepsilon r) \\ &\quad \times \frac{r_{x}\pm ir_{y}}{r}\mathcal{V}(\mathbf{b},\mathbf{r})\Big[1-e^{\mathcal{A}\mathcal{W}}\Big]\,. \end{split}$$
contribution:

$$x_{P}F_{q\bar{q}g}^{D(4)} \simeq \frac{1}{N_{c}^{2}}\int \frac{dt_{g}dz_{g}}{t_{g}+m_{g}^{2}}\,P_{gg}(z_{g})\frac{\alpha_{s}(t_{g})}{2\pi}x_{P}F_{q\bar{q}}^{D(4)}$$

Gluonic dipole

Diffractive structure function: large Q^2

Gluon density parametrizations at low-x and low Q²

Large differences at $x < 10^{-2}$ and $Q^2 < 2 GeV^2 !!$

 \rightarrow Unknown gluon density in this region !!!

Model parameters

Photon polarization contributions and mass spectrum

Summary

✓ We constructed the QCD based model for the soft gluon rescattering.

- The model works basically well and leads to a good description of the HERA data on the diffractive structure function in almost all bins in photon virtuality and invariant mass of the final hadronic system.
- At lower xP and Q^2 the uncertainties in conventional parton densities become significant, and some improvement of the data description is still needed.