

Representing H1 and ZEUS collaborations

Low x workshop, Kavala 2010

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}$ =318 GeV
- · two experiments: H1 and ZEUS
- HERA I,II: about 500 pb-1
- closed July 2007, still lot of excellent data to analyse.....

DIS: Probe structure of proton $\rightarrow F_2$

Diffractive DIS: Probe structure of diffraction $\rightarrow F_2^D$

Diffraction and diffraction kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons

 $M_y > m_p$ proton dissociates, contribution should be understood

Two kinematic regions of diffractive events:

$$Q^2\sim 0 \rightarrow \text{photoproduction}$$

 $Q^2 >> 0 \rightarrow \text{deep inelastic scattering (DIS)}$

HERA: ~10% of low-x DIS events diffractive

$$x_{\text{IP}} = \frac{q \cdot (p - p)}{q \cdot p} \approx \frac{Q^{2} + M_{X}}{Q^{2} + W^{2}}$$

momentum fraction of color singlet exchange

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

fraction of exchange momentum, coupling to y

$$\frac{t = (p - p')^2}{\text{squared}} \rightarrow \frac{\text{4-momentum transfer}}{\text{squared}}$$

Methods of diffractive ev. selection

Proton spectrometers

ZEUS: LPS (1993-2000) H1: FPS (1995-2007) VFPS (2002-2007)

M_x method, ZEUS:

Diffractive vs non-diffractive: exponential fall off vs constant distribution in $ln\ M_{x}^{2}$

Large Rapidity Gap, H1, ZEUS:

require no activity beyond η_{max} t is not measured very good acceptance at low x_{IP} p-diss background about 20% $\mbox{2}$

Different systematics - non-trivial to compare!

Next results -> LRG method was used!

Photoproduction, γp , $Q^2 \rightarrow 0$

x_γ - fraction of photon's momentum in hard subprocess

$$x_{\gamma} = x_{\gamma}^{OBS} = \frac{\sum (E - p_z)_{jets}}{(E - p_z)_{hadrons}}$$

resolved

direct photoproduction

photon directly involved in hard scattering

 $x_v = 1$ (at parton level)

<u>hadron</u> -like component

photon fluctuates into hadronic system, which takes part in hadronic scattering

 \times_{v} < 0.2 (at parton level)

point -like component of resolved photon

dominates in the region of $0.2 < x_v < 1$

Two types of factorisation

QCD factorisation holds for inclusive and non-inclusive processes:

- photon is point-like (Q² is high enough)
- higher twist corrections are negligible (M_x is high enough) QCD factorisation theoretically proven for DIS (Collins 1998)

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \cdot \sigma^{\gamma^{*}i}(x, Q^{2})$$

 $f_i^D \to \text{DPDFs}$ - obey DGLAP, universal for diff. ep DIS (inclusive, dijet, charm) $\sigma^{\gamma^{*i}} \to \text{universal hard scattering cross section (same as in inclusive DIS)}$

It allows the extraction of DPDFs from the (DIS) data

H1 and ZEUS -QCD fits assuming Regge factorisation for DPDF

$$f_{i}^{D}(x,Q^{2},x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_{i}^{IP}(\beta = x/x_{IP},Q^{2})$$

$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}} \quad \text{pomeron flux factor} \quad \text{pomeron PDF}$$

24.06.2010

Tests of QCD factorisation

Basic strategy:

- · measure a particular diffractive final state
- compare the measurement with NLO calculation using DPDFs previously extracted

What kind of final states?

- · processes with a hard scale
- sensitive to gluons (gluons contribute by up to 80% to the DPDFs, mainly for high $z_{\rm IIP}$)

Dijets and D* in DIS/photoproduction are the best candidates!

Factorisation in hadron-hadron collisions

Exporting DPDFs from HERA to Tevatron does not work

$$S^{2}=\frac{\sigma (data)}{\sigma (theory)}$$

suppression factor

Factorisation broken by β -dependent factor ~ 10, S^2 ~ 0.1.

Succesfully explained in terms of rescattering and absorption (see Kaidalov, Khoze, Martin, Ryskin: Phys. Lett. B567 (2003),61) KKMR predicted suppression factor for HERA resolved photoproduction $5^2 \sim 0.34$

```
In 2010 new theoretical prediction by KKMR: (European Journal of Physics 66,373 (2010)) Suppression 0.34 present only for hadronic part of photon PDF (x_v<0.2), for dominant point-like component ——— suppression: quarks GRV 0.71(0.75) E_T^{\text{jet1}} >5 (7.5) GeV gluons GRV 0.53(0.58) E_T^{\text{jet1}} >5 (7.5) GeV
```

What we learned from HERA data?

DIS dijets - factorisation theoretically predicted. Both H1 and ZEUS confirmed experimentally and used for QCD fits ("H1 fit jets", "ZEUS fit SJ").

D* in DIS & photoproductiondata within large errors not in contradiction with factorisation

New ZEUS fits compared to published DIS D* data. (Nucl.Phys. B672 (2003),3.) (Nucl.Phys. B831 (2010), 1)

What we learned from HERA data?

Photoproduction dijets - factorisation not predicted theoretically, experimentally not fully understood.... different conclusions made by H1 and ZEUS, H1 observed suppression about 0.5-0.6, ZEUS negligible suppression (in different phase space, e.g. larger E_T of jets.)

Published ZEUS dijet photoproduction data (Eur.Phys.J.C 55 (2008),177) compared to NLO with "H1 fit Jets" and "ZEUS fit SJ"

Dijet photoproduction

$$\begin{split} E_{\text{T}}^{\text{ jet1}} > 5 \text{ GeV} \\ E_{\text{T}}^{\text{ jet2}} > 4 \text{ GeV} \\ -1 & < \eta^{(\text{jet 1 and 2})} < 2 \\ x_{_{\text{IP}}} < 0.03 \\ \begin{cases} 0.3 < y_{_{\text{e}}} < 0.65 \\ Q^2 < 0.01 \text{ GeV}^2 \\ \end{cases} \\ \left\{ \begin{aligned} |t| & < 1 \text{ GeV}^2 \\ M_{_{Y}} < 1.6 \text{ GeV} \end{aligned} \right. \end{split}$$

H1 data 1999-2000

DESY10-043 (2010)

Data compared to RAPGAP MC and NLO GRV photon structure function

NLO calculations - Frixione/Ridolfi

3 sets of DPDFs

```
    H1 2006 fit B
    H1 2007 fit jets
    ZEUS SJ fit
```

Dijets in photoproduction

The data data correlated uncertainty NLO with "H1 fit B" \rightarrow larger cross section than data. Shapes of distributions are described. RAPGAP describes data satisfactorily.

Double differential cross sections

Ratio data/theory - 3 DPDFs

"H1 fit jets" and "ZEUS fit SJ" give similar agreement in shape. "ZEUS fit SJ" gives larger prediction by about 15-20 % than "H1 fit B". Differences are covered by theor. uncertainties.

Global suppression:
0.58 for "H1 fit B"
0.64 for "H1 fit jets"
0.70 for "ZEUS fit SJ"

Comparison with KKMR models

NLO calculations

Model KKMR 2003: resolved part suppressed by 0.34.

Model KKMR 2010: quarks suppressed by 0.71 gluons suppressed by 0.53

Model KKMR 2010 agrees with H1 data better than model 2003 but shape description is still better with global suppression.

Conclusions

- · DIS dijets, D* in DIS & photoproduction factorisation holds.
- Shapes of distributions described better by NLO using "H1 fit B" and global suppression than using the suppression from KKMR 2010 model.
- Suppression is insensitive to the presence or nature of remnant (either the photon or diffractive exchange).