Anomalous quartic $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings in γ -induced processes

Christophe Royon IRFU-SPP, CEA Saclay

Low x 2010, June 23-27 2010, Kavala, Greece

Contents:

- WW production cross section at the LHC
- Quartic anomalous couplings

Work in collaboration with E. Chapon, O. Kepka See arXiv:0808.0322, Phys. Rev. D78 (2008) 073005; arXiv:0908.1061; arXiv:0912.5161 Phys. Rev. D81 (2010) 074003 T J. De Favereau et al., arXiv:0908.2020. Production of SUSY particles: See talk by Nicolas Schul WW production at the LHC

- Study of the process: $pp \rightarrow ppWW$
- Clean process: W in central detector and nothing else, intact protons in final state which can be detected far away from interaction point
- Exclusive production of W pairs via photon exchange: QED process, cross section perfectly known
- Two steps: SM observation of WW events, anomalous coupling study (NB: new anomalous couplings predicted by beyond standard model theories) at high luminosities at LHC
- $\sigma_{WW} = 95.6 \text{ fb}, \ \sigma_{WW}(W > 1TeV) = 5.9 \text{ fb}$
- Rich $\gamma\gamma$ physics at LHC

WW production at the LHC

- Signal: We focus on leptonic signals decays of WW and ZZ, the protons are tagged in the forward proton detectors; fast simulation of the ATLAS detector (ATLFast++)
- Backgrounds considered:
 - Non diffractive WW production: large energy flow in forward region, removed by requesting tagged protons
 - Two photon dileptons: back-to-back leptons, small cross section for high p_T leptons

- Lepton production via double pomeron exchange: activity in the forward region due to pomeron remnants, removed by $\not\!\!E_T$ cut
- WW via double pomeron exchange: removed by cut on high diffractive mass

Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
 - two-photon exchange
 - single diffraction
 - double pomeron exchange
 - central exclusive production
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a survival probability of 0.03 applied for LHC
- Survival probability for photon exchange events: 0.9
- Central exclusive production: Higgs, jets... for Khoze Martin Ryskin or Dechambre Cudell models as an example; Szczurek et al. model to be implemented (See talk by Rafal Staszewski)
- FPMC manual in preparation (M. Boonekamp, O. Kepka, V. Juranek, C. Royon, R. Staszewski...)
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone ATLFast++ package

Strategy to measure the $\gamma\gamma \to WW$ SM cross section

- Require both Ws to decay leptonically (as a starting point to avoid jet background) with p_T of leading (2nd leading) lepton above 25, 10 GeV
- Require both protons in the ATLAS Forward Proton (AFP) detector
- $\not\!\!E_T > 20$ GeV, natural for W decays (get rid of dilepton background produced by photon exchange
- $\Delta \Phi$ between leading leptons allows to remove dilepton background

Measuring the $\gamma\gamma \rightarrow WW$ SM cross section

Number of events for 30 fb^{-1} after successive cuts

cut / process	$\gamma\gamma \rightarrow ll$	$DPE \rightarrow ll$	$DPE \to WW$	$\gamma\gamma \to WW$
$p_T^{lep1,2} > 10 \text{ GeV}$	50620	17931	8.8	95
$0.0015 < \xi < 0.15$	21059	11487	5.9	89
$\not\!\!\!E_T > 20 \mathrm{GeV}$	14.9	33	4.7	78
$W > 160 { m ~GeV}$	9.2	33	4.7	78
$\Delta \phi < 2.7$	0	14	3.8	61
$p_T^{lep} > 25 \mathrm{GeV}$	0	7.5	3.5	58
W < 500	0	1.0	0.67	51

5 σ discovery possible after 5 fb⁻¹ (pure leptonic decays of Ws)

Measuring the $\gamma\gamma \rightarrow WW$ SM cross section: semi-leptonic decays

- Consider both leptonic and semileptonic decays of *W*s
- Fast generator level study: For a luminosity of 200 pb⁻¹, observation of 5.6 W pair events for a background less than 0.4, which leads to a signal of 8 σ

ξ_{max}	signal (fb)	background (fb)
0.05	13.8	0.16
0.10	24.0	1.0
0.15	28.3	2.2

• Study needs to be redone considering the simulation of all backgrounds: especially when one of the quarks radiates a W boson, which is being implemented in FPMC

• Quartic gauge anomalous $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings parametrised by a_0^W , a_0^Z , a_C^W , a_C^Z

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

- Anomalous parameters equal to 0 for SM
- Non zero anomalous couplings motivated by Higgsless and extra dimension models (under study: Christophe Grojean et al.)
- Best limits from LEP, OPAL (Phys. Rev. D 70 (2004) 032005) of the order of 0.02-0.04, for instance $-0.02 < a_0^W < 0.02$ GeV⁻²
- Dimension 6 operators \rightarrow violation of unitarity at high energies

Quartic anomalous gauge couplings: form factors

 Unitarity bounds can be computed (Eboli, Gonzales-Garcia, Lietti, Novaes):

$$4\left(\frac{\alpha as}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) \le 1$$

where $a = a_0 / \Lambda^2$

- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: $a_0^W/\Lambda^2 \rightarrow \frac{a_0^W/\Lambda^2}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics
- For $a_0^W \sim 10^{-6} {\rm ~GeV^{-2}}$, no violation of unitarity

Strategy to select quartic anomalous gauge couplings events

- p_T of the leading lepton: request high p_T lepton to remove background
- Missing E_T distribution: natural to be requested for W pair production
- Diffractive mass computed using the forward proton detectors $\sqrt{\xi_1\xi_2S}$: request high mass objects to be produced
- $\Delta\Phi$ between both leptons: avoid back-to-back leptons

Distribution of the leading lepton p_T after all cuts (proton tagged, $\not\!\!E_T$, diffractive mass, $\Delta \Phi$) except the cut on leading lepton p_T

Background events for 30 fb $^{-1}$

cut / process	$\gamma\gamma \rightarrow ll$	$\gamma\gamma \to WW$	$DPE \rightarrow ll$	$DPE \to WW$
$p_T^{lep1,2} > 10 \text{ GeV}$	50619	99	18464	8.8
$0.0015 < \xi < 0.15$	21058	89	11712	6.0
$\not\!\!\!E_T > 20 \mathrm{GeV}$	14.9	77	36	4.7
$W > 800 { m GeV}$	0.42	3.2	16	2.5
$M_{ll} \notin < 80, 100 >$	0.42	3.2	13	2.5
$\Delta \phi < 3.13$	0.10	3.2	12	2.5
$p_T^{lep1} > 160 \text{ GeV}$	0	0.69	0.20	0.024

Signal events for 30 $\rm fb^{-1}$

cut / couplings (with f.f.)	$\left a_0^W / \Lambda^2 \right = 5.4 \cdot 10^{-6}$	$\left a_C^W/\Lambda^2\right = 20 \cdot 10^{-6}$
$p_T^{lep1,2} > 10 \text{ GeV}$	202	200
$0.0015 < \xi < 0.15$	116	119
$\not\!\!\!E_T > 20 \mathrm{GeV}$	104	107
$W > 800 { m ~GeV}$	24	23
$M_{ll} \notin < 80,100 >$	24	23
$\Delta \phi < 3.13$	24	22
$p_T^{lep1} > 160 \text{ GeV}$	17	16

- Strategy for ZZ events similar: Request either three leptons or two leptons of the same sign, protons tagged in forward detectors, p_T of leading leptons greater than 160 GeV
- Number of events for 30 fb⁻¹ for the different couplings
- 5 σ discovery countours for two different luminosities 30 and 200 fb⁻¹
- Present LEP limits can be improved by up to four orders of magnitude

Reach at LHC

Reach at high luminosity on quartic anomalous coupling

Couplings	OPAL limits	Sensitivity @ $\mathcal{L} = 30$ (200) fb ⁻¹	
	$[GeV^{-2}]$	5σ	95% CL
a_0^W/Λ^2	[-0.020, 0.020]	5.4 10^{-6}	$2.6 10^{-6}$
		$(2.7 \ 10^{-6})$	$(1.4 10^{-6})$
a_C^W/Λ^2	[-0.052, 0.037]	$2.0 10^{-5}$	9.4 10^{-6}
		$(9.6 10^{-6})$	$(5.2 10^{-6})$
a_0^Z/Λ^2	[-0.007, 0.023]	$1.4 10^{-5}$	$6.4 10^{-6}$
		$(5.5 \ 10^{-6})$	$(2.5 10^{-6})$
a_C^Z/Λ^2	[-0.029, 0.029]	$5.2 10^{-5}$	$2.4 10^{-5}$
		$(2.0 \ 10^{-5})$	$(9.2 10^{-6})$

- Improvement of LEP sensitivity by more than 4 orders of magnitude with 30/200 fb $^{-1}$ at LHC!!!

Conclusion

- Observation of QED WW production at the LHC: easy once forward detectors installed
- Quartic gauge anomalous coupling studies: Easy analysis (2 W or Z decaying in leptons); Improvement of LEP (OPAL) sensitivity by four orders of magnitude with \sim 30-200 fb⁻¹
- Trilinear gauge anomalous coupling at high luminosity: requires forward detectors, gain of a factor 10 compared to Tevatron sensitivity (direct limit), gain of a factor 3 with respect to LEP (indirect limits), best reach before ILC