Probing Small-x QCD with Cosmic Neutrinos

Ina Sarcevic University of Arizona

Cosmic accelerators

- Particles (electrons, protons, etc) are accelerated to high energies via Fermi shock acceleration
- High energy protons collide with ambient protons and photons
- Hadronic production of pions, kaons and D-mesons which decay into neutrinos

Cosmic Accelerators

Physics Today 2009

Cosmic Neutrinos

- Solar Neutrinos (MeV energies)
- · SN 1987A (MeV energies)
- Atmospheric Neutrinos (GeV to TeV energies)
- Extragalactic Neutrinos (AGN, GRB, cosmogenic; GeV to EeV energies)
 Cosmogenic Neutrinos (from interaction of cosmic rays with the microwave background radiation, guaranteed source of UHE neutrinos)

Neutrino fluxes

Neutrino Fluxes at Earth

Enberg, Reno and Sarcevic, Phys. Rev. D79(2009)

*Cosmic neutrino flux is obtained by solving the evolution equations for nucleon, meson and neutrino fluxes:

$$\frac{d\phi_N}{dX} = -\frac{\phi_N}{\lambda_N} - \frac{\phi_N}{\lambda_{rad}} + S(Np \to NY)$$
$$\frac{d\phi_M}{dX} = -\frac{\phi_M}{\lambda^{dec}} - \frac{\phi_M}{\lambda^{had}} - \frac{\phi_M}{\lambda^{rad}} + S(Mp \to MY)$$
$$\frac{d\phi_l}{dX} = \sum_M S(M \to \nu)$$

where $\lambda^{had}_{N,M}$ is the interaction length $(\lambda_N = 1/(n_p \sigma_{pp}))$, $\lambda^{dec} = \gamma C \tau_M$ is the decay length

$$S(k \rightarrow j) \text{ is the regeneration function for}$$

$$k=p,\pi^{\pm},K^{\pm},D^{\pm},D^{0},$$

$$S(k \rightarrow j) = \int_{E}^{\infty} \frac{\phi_{k}(E_{k})}{\lambda_{k}(E_{k})} \frac{dn(k \rightarrow j; E_{k}, E_{j})}{dE_{j}} dE_{k}$$

$$dn(k \rightarrow j; E_{k}, E_{j})/dE_{j} \text{ is the } \pi^{\pm}, K^{\pm}, D^{\pm}, D^{0}$$

$$production \text{ or decay distribution :}$$

$$\frac{dn(k \rightarrow j; E_{k}, E_{j})}{dE_{j}} = \frac{1}{\sigma_{kA}(E_{k})} \frac{d\sigma(kp \rightarrow jY, E_{k}, E_{j})}{dE_{j}}$$

$$\frac{dn(k \rightarrow j; E_{k}, E_{j})}{dE_{k}} = \frac{1}{\Gamma_{k}} \frac{d\Gamma(kj \rightarrow jY, E_{j})}{dE_{j}}$$

Charm Production and Cross Sections using pQCD and PDFs

$$\frac{d\sigma}{dx_F} = \int \frac{dM_{c\bar{c}}^2}{(x_1 + x_2)s} \sigma_{gg \to c\bar{c}}(\hat{s}) G(x_1, \mu^2) G(x_2, \mu^2)$$

The total charm cross section in pQCD is given by: $\sigma(pp \to c\bar{c}X) = \int dx_1 dx_2 G(x_1, \mu^2) G(x_2, \mu^2) \hat{\sigma}_{gg \to c\bar{c}}(x_1 x_2 s)$

where

$$x_{1,2} \sim m_c/2m_p E_{\nu}$$

For high energies we need gluon PDF for small x, and low Q^2

ZEUS

The problem of small x

Gluon distribution grows rapidly as $x \rightarrow 0$: gluons start overlapping and may start recombining: saturation of cross section

Charm Production: dipole approach

$$\sigma_T(\gamma^*N) = \int_0^1 dz \int d^2 \mathbf{r} |\Psi_T(z,\mathbf{r},Q^2)|^2 \sigma_{dN}(x,\mathbf{r})$$

• Dipole model fits small x data HERA data (Stasto, et al., PRL 86 (2001))

 Improved QCD motivated form - Balitsky-Kovchegov (BK) evolution modified for gluon -> charm anticharm pair

HERA PDF comparison with MRSTW and CTEQ

Raicevic (H1 and ZEUS), Nucl. Phys. B198 (2010)

Prompt Atmospheric Neutrino Flux

Enberg, Reno, Sarcevic, Phys. Rev. D 78 (2008) 043005

Prompt ATM Neutrino Flux

Range of predictions:

DM=our dipole model

MRS=Martin, Roberts, Stasto, Acta Phys. Polon. B34 (2003), uses a simpler form for dipole model cross section.

Enberg, Reno, Sarcevic, Phys. Rev. D 78 (2008) 043005

Atmospheric neutrinos-angular dependence

Muon neutrino plus antineutrino flux, from our dipole model "prompt" calculation.

Conventional flux from Gaisser-Honda.

Enberg, Reno, Sarcevic, Phys. Rev. D 78 (2008) 043005

Measurement of ATM Neutrino Flux

Icecube will be able to get more data at high energies

Halzen, Eur. Phys. J C46 (2006) 669

Neutrino Detection

 Detection of neutrinos depends on their interactions, i.e. cross section

• Muon neutrinos interacting with "matter", i.e. nucleons, producing muons

• Muons are "charged", so they leave charged tracks in the neutrino detector

- The event rate for "downward" muons from neutrino interactions $R = V \int dE_{\nu}\sigma_{cc}(E_{\nu})F_{\nu}(E_{\nu})$
- The event rate for "upward" muons from neutrino interactions

$$R = N_A A \int dE_{\nu} \sigma_{cc} R_{\mu} S(E_{\nu}) F(E_{\nu})$$

where F_{ν} (E_{ν}) is neutrino flux at the source, $S(E_{\nu})$ is neutrino attenuation and R_{μ} is muon range

Ultrahigh energy neutrino-nucleon scattering

Medium energy, $\sigma \sim G_F^2 s \simeq 2.8 \cdot 10^{-39} \text{ cm}^2 \cdot s/\text{GeV}^2$ High energy: $Q^2 \rightarrow M_W^2$ $x_{\min} = M_W^2 / 2m_N E_{\nu}$ $\frac{d^2\sigma}{dx\,dy} = \frac{2G_F^2 M E_v}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x,Q) + x\overline{q}(x,Q)(1-y)^2\right]$ Quark distribution functions W boson propagator

For $E_{\nu} > 10^8$ GeV, $x_{min} < 10^{-5}$, we need parton distributions at small x and $Q \sim M_W$

Gandhi, Reno, Quigg and Sarcevic, PRD 58 (1998); Astropart. Phys. 5 (1996)

Structure functions (to get PDFs)

Theory Issues: how to extrapolate?

In Q

Deep Inelastic Scattering Devenish & Cooper-Sarkar, Oxford (2004) DGLAP=Dokshitzer, Gribov, Lipatov, Altarelli & Parisi

Neutrino Cross Sections

R. Gandhi, C. Quigg, M.H. Reno and I.S., PRD58 (1998)

At high energy σ (ν N) sensitive to small-x QCD

Small x extrapolations

Gandhi, Reno, Quigg and Sarcevic, PRD 58 (1998), Astropart. Phys. 5 (1996)

CC Cross Sections

KK

Henley & Jalilian-Marian PRD73 (2006) 094004

Anchordoqui, Cooper-Sarkar, Hooper & Sarkar, Phys. Rev. D 74 (2006) 043008

Cooper-Sarkar & Sarkar, JHEP 0801 (2008), new analysis of HERA data incl. heavy flavor, lower cross section at UHE (closer to CTEQ6 results)

HERA: extrapolations with λ =0.5,0.4,0.38

KOPA: DLA, Kotikov & Parente

ASW: saturation effects, Armesto, Salgado & Wiedeman

Armesto, Merino, Parente & Zas, PR D 77 (2008)

Anchordoqui, Cooper-Sarkar, Hooper & Sarkar, Phys. Rev. D 74 (2006)

Determining UHE Neutrino Cross Sections

Anchordoqui et al., PR D76 (2007)

Conclusions

•Charm contribution to neutrino production is important at high energies.

•Measurement of atmospheric neutrinos at high energies can provide information about small-x (small Q²) parton distributions.

•Neutrino detection depends on neutrino cross section which relies on small-x extrapolations of parton distributions (large Q²) well beyond the experimental measurements

•Cosmic neutrinos can be used as probes of small-x QCD

© Original Artist Reproduction rights obtainable from www.CartoonStock.com

QUARKS. NEUTRINOS. MESONS. ALL THOSE DAMN PARTICLES YOU CAN'T SEE. THAT'S WHAT DROVE ME TO DRIVK. BUT NOW I CAN SEE THEM !

search

shr128.