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Motivation and Background

Aim: To implement a generic and simple method of enforcing non-linear
effects in linear evolution equations at small-x , in particular CCFM.

Transition between linear and non-linear region around k ∼ Qs , but
non-linear physics also affects region k > Qs , shape of gluon distribution
changed.

Exact non-linear dynamics is not necessary for finding correct Qs . One
can emulate non-linear dynamics via some boundary condition in k on
the evolution (Mueller, Triantafyllopoulos hep-ph/0205167)

Implementation of saturation boundary of possible practical interest for

any small-x observable sensitive to unintegrated pdfs, but also interesting

theoretically.
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Saturation in BFKL

Gluon distribution in Mellin representation (Y ≡ ln 1/x):

A(Y , k) =

∫
dγ

2πi
eωY−(1−γ)ρÃ(γ) , ρ ≡ ln(k2/Q2

0 )

Saddle point equations relevant for saturation problem:

ωsY − (1− γs)ρs = 0

ω′sY + ρs = 0

From these one immediately finds Q2
s = Q2

0e
ωs

1−γs
Y where ωs/(1− γs)

pure number, γs ≈ 0.37. Moreover, A for ρ & ρs given by

A ∼ 1√
2πω′′s Y

e−(1−γs )(ρ−ρs )e
− (ρ−ρs )2

2ω′′s Y

Characteristics: Geometric scaling and diffusion.
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Overview of Method

Qs essentially line of constant density. Basic idea then simple: Follow a
particular line of constant density and do not let A grow ”too large”.

In practice, define ”critical line” by A(Y , ρc) = c . First part. Second
part: Apply boundary at ρ ≤ ρc −∆. c and ∆ numbers.

One can let A(Y , ρ) = C for C = 0 (absorptive boundary) or C 6= 0 for
ρ ≤ ρc −∆. Or one can freeze A(Y , ρ) = A(Y , ρc −∆) for ρ ≤ ρc −∆.

Different choices will change normalization but shape and Y dependence
of A and Qs should not change.

In arXiv:0901.2873 it was demonstrated that this method is for BFKL
equivalent to solving non-linear BK (for k ≥ Qs) for all Y and for both
fixed and running ᾱs .
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CCFM
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xi = zixi−1, yi = (1− zi )xi−1. Emission of real gluons ordered in
angle: θ1 < θ2 < · · · < θn < θ̄ (from coherence). Maximum angle
set by kinematics of hard scattering.
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CCFM equation

Integral equation:

A(Y , k, p) =

∫ Y

0

dy

∫
d2q

πq2
ᾱs ∆ns(Y − y , k , q) θ(log(p/q) + Y − y)

A(y , |kkk + qqq|, q)

Here Y − y = ln 1/z . ∆ns is ”non-Sudakov” form factor, θ encodes the
angular ordering, and p is related to maximal angle θ̄ as θ̄ = p/(xnE ).

In addition there are also soft emissions: 1/(1− z) with associated
”Sudakov” ∆s . These are ”probability conserving”, but in practice
important to include them. For future work. Included in CASCADE MC.
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A note on the non-Sudakov

”non-Sudakov” form factor in CCFM given by (Y − y = ln 1/z)

∆ns = exp

(
−
∫ 1

z

dz ′

z ′

∫ k2

z′2q2

dq′2

q′2
ᾱs

)

If k2 < zq2 then ∆ns > 1. k2 ≥ zq2 is kinematical constraint, necessary
for internal consistency. Without it, linear evolution is unstable.

Another version of ∆ns given by (Kwiecinski et al. hep-ph/9503266)

∆ns = exp

(
−
∫ 1

z

dz ′

z ′

∫
dq′2

q′2
ᾱs θ(k − q′)θ(q′ − z ′q)

)
≤ 1

With saturation however we will see that there is no difference in using
either of them.
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Saturation problem in CCFM

Mellin representation

A(Y , k , p) =

∫
dγ

2πi
eω(γ)Y−(1−γ)ρ H(p/k)

H encodes effect of angular ordering, can be found by differentiating
integral equation wrt p.

If p →∞, H(p/k)→ 1, then same type solution as in BFKL, but, ω still
different. BFKL recovered only when ᾱs → 0. For p > Qs

ρs =
ω

(0)
s

1− γ(0)
s

Y − ᾱsH(1)

(1− γ(0)
s )f

(0)
s

e−(1−γ(0)
s )ρp+ω

(0)
s Y + · · ·

As p/Qs → 1 more complicated behavior with p and Y , formula then not
valid anymore.
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Saturation scale: Plot
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The case p/Qs < 1 is more difficult to treat analytically. In that case we
only do numerical analysis.

We will apply same method in the numerical solution of CCFM. In
arXiv:0906.2683 only the case k � p was studied. Then p dependence
could be dropped.
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Fixed coupling results
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Solutions for Y = 6→ 14. Coupling ᾱs = 0.2. Different solutions rather
similar.

Note that growth of Qs driven by growth at k > Qs . However coherence
restricts this growth as ∃ very little phase space.
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Coherence + Saturation = Saturation of Saturation
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In linear evolution strong growth at small k compensates suppression due
to phase space. But this growth removed by saturation, thus combined
effect implies that A ”stalls” at some point and Qs itself saturates.

However, this happens at extreme Y , here Y = 10→ 50, and with
running ᾱs even higher Y needed.
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Running coupling results
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As well know from BFKL studies, growth of Qs slowed down in
this case. When p � k result is BFKL-like, but very different when
p . k.
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Saturation scale results

Different boundary conditions, and the different ∆ns , and p = 1 (circles)
and p = 200 (squares) GeV. Results very similar.

For p >> Qs , ρs ∝
√

Y , but different when p ∼ Qs .
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In Asymptotia

p = 1, 10, 40 and 200 GeV.

Complete saturation of Qs requires extreme Y . However, even at small

Y , when p is small behavior rather different than in BFKL.
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Outlook

First study of Qs in CCFM retaining p dependece. We find that Qs and
A look rather different than in the corresponding BFKL analysis.

The phase space suppression above p, together with saturation implies
that Qs essentially saturates at large (extreme) Y .

For phenomenology it is important to include the soft emissions. These
are known to slow down the evolution.

Results from CASCADE MC show that growth with x is very slow. To
understand this better it is valuable to have simple numerical solution of
equation.

One should then study the effect of saturation and non-leading effects in

the small-x evolution simultaneously, to see the relative importance of

the various effects, and whether saturation plays a role for hard processes

at the LHC.
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