Operational experience with the very forward calorimeter CASTOR at CMS

Silvia Ochesanu

On behalf of the CMS collaboration

- Physics motivation
- CASTOR calorimeter in CMS
- Results from test beam and Monte Carlo validation
- Very first data collected with CASTOR at LHC
- Conclusions

Placement and Physics Programe

- > Underlying Event/ Multi Partonic Interaction
- Parton Shower Evolution
- Diffraction
- Cosmic Ray Physics

low-luminosity proton-proton and heavy-ion collisions

grows with decreasing x, in this dense system of partons, many of them could X_1 X₁ interact

Probability for more than one partonic interaction per event increases.

UE has several components, adjusting MC models to mimic the data is challenging.

Silvia Ochesanu – Operational experience with the very forward calorimeter CASTOR at CMS– Low x Meeting, Kavala, Greece, June 23-27, 2010

- UE constituents: Everything except first hard interaction
 - Soft beam remant interaction
 - additional (semi)hard constituent scatterings (multi-parton interactions, MPI)
 - Intial and final state radiations . . .

hard to calculate because these process are related with soft physics and non-perturbative interactions play a dominant role.

At high energies low x values become accessible and the density of partons

 \rightarrow need to model them phenomenologically

Underlying event and

why do you care about it?

Small -x region

Underlying event and CASTOR

[G.Brona talk]

 MPI affect strongly the energy flow in the forward region and induce correlation in activity between central and forward region

energy deposit sensitive to different MPI modeling

CASTOR can make a relevent measurement and improve the UE modeling at very high eta.

CASTOR calorimeter

- Cerenkov calorimeter situated at 14.39 m (-z) from CMS IP
- extend the coverage of CMS in forward direction to -6.6 < η < -5.2
- sampling calorimeter with quartz plates as active medium and tungsten as absorber → compact, radiation hard and fast
- electromagnetic and hadronic module
- 16 azimuthal sectors (φ)
 14 longitudinal module (z)
 224 readout channels
 no segmentation in η

CASTOR in CMS cavern

 Fully functional and integrated into CMS operations since June 2009

operation in magnetic field (≤ 0.16 T)
 → modules from 6 (3.5λ) to 9 (5.6λ) loss in the efficiency; some channels can be recovered

CMS preliminary														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
16	0.96	1.03	1.06	1.10	1.44	0.71	0.03		0.79	0.92	1.00	1.09	1.12	1.06
15	1.06	1.00	1.0	1.11	1.32	1.44	0.02		0.89	1.01	0.98	1.03	1.09	1.10
14	0.93	1.02	1.07	1.06	1.35	0.60	0.04		0.82	0.94	1.13	1.12	1.21	1.3
13	1.01	1.05	1.05	1.15	1.48	0.21	0.03			0.87	1.03	1.13		1.21
12	0.99	1.10	1.12	1.10	1.10	0.17	0.00	0.00	0.67	0.86	1.07	1.05	1.16	1.21
11	0.99	1.00	1.10	1.14	1.31	0.28	0.01	0.02	0.81	0.99	1.06	1.01	1.08	1.10
10	1.10	1.06	0.99	1.06	1.08	0.34	0.01	0.69	0.98	0.98	1.01	0.95	0.99	1.19
9	0.99	1.00	1.03	1.09	1.01	0.33	0.02	0.76	0.83	0.95	0.95	0.98	1.03	0.96
, 8	1.03	0.85	0.94	1.00	0.91	1.14	0.02	0.77	0.78	0.88	0.95	0.93	1.03	0.95
7	1.01	0.90	1.00	1.01	1.03	0.20	0.01	0.60	0.84	0.78	0.88		0.90	0.95
6		1.14	0.95	0.90	1.23	0.32	0.02	0.02	0.75	0.76	0.89	0.76	0.80	0.94
5		1.00	0.95	0.95	1.2	0.49	0.07	0.01	0.04		0.82	0.68	1.06	1.03
4	0.93	1.01	0.94	1.01	0.90	0.58	0.03	0.00	0.02	0.78	0.85	0.94	0.96	1.06
3	0.98	1.00	0.97	0.94	1.08	0.60	0.03	0.03	0.42	0.78	0.93	0.96	1.08	0.89
2	0.94	0.88	0.98	0.96	1.02	1.48	0.07	0.25	0.79	0.85	0.83	0.96	0.99	1.00
1	1.11	0.95	1.01	1.11	1.06	1.91	0.04	0.72	0.83	0.96	0.92	0.98	0.99	1.06

Minimum bias data: Run 133874 (Nominal B-field) / Run 133239 (No B-field)

Results from beam test

Test beam 2007 [European Physical Journal C: Volume 67, Issue 3 (2010), Page 601] full-length prototype tested with muons, electons, pions in wide energy range

- Entries/bin 40 Muon signal 35 Pedestal signal 30 25 20 15 10 5 -20 0 20 60 80 100 120 140 160 180 QIE counts [fC] Response to 150 GeV muon beam in one EM channel
- clear separation of the muon signal from the pedestal
- Muons studies very important for the intercalibration

*

Test beam 2007 [European Physical Journal C: Volume 67, Issue 3 (2010), Page 601]

from 8.8% at 30GeV to 5.3 % at 200GeV

from 46.5% at 20GeV to 22 % at 300GeV

★ Results obtained with pencil like beam

- the channel response is equalized using a muon beam.
- the absolute calibration factor is obtained from the response to electrons
- agreement between simulation and beam test data within 10 %.

Non-linearity(Non-compensation) for pions

The comparison shows that the electromagnetic component of hadronic showers (which dominates the Čerenkov signal) is not described in non-compensation by the QGSP shower model.

- the channel response in the test beam is equalized using a muon beam
- the absolute calibration factor in the test beam is obtained from the response to electrons.

Trigger:

- Filled bunch
 - L1 Tech bit 0
- Beam Halo rejection (BSC):
 - L1 veto Tech bit 36-39
- remove a large fraction of the single and double diffractive events
 - L1 Tech bit 40 or 41 signal in each Beam Scintillator Counters(BSC) in coincidence with a signal from the Beam Pick up Timing(BPTX)

Event selection:

- beam background rejection(anomalus large number of pixel hits)
 - the fraction of the high purity tracks with respect to the total number of tracks is at least 20% for events with more then 10 tracks
- at least 1 collision vertex within 15 cm of IP and impact parameter has been reconstructed with number of tracks > 3.

Minbias Data at 0.9, 2.4 and 7 TeV

The charge (in fC) collected per channel is added after subtraction of the mean pedestal for all channels in *z*-module 1 to 5, without intercalibration of the channel response.

- increase of mean energy flow with centre-of- mass energy
- sensitivity to events with a rapidity gap in CASTOR.

Silvia Ochesanu – Operational experience with the very forward calorimeter CASTOR at CMS– Low x Meeting, Kavala, Greece, June 23-27, 2010

Conclusions

- Cherenkov forward CASTOR calorimeter has been designed, studied in beam tests, installed, commissioned and fully integrated into CMS
- CASTOR detector is operational and taking data
- we presented energy flow in CASTOR for different center of mass energies :0.9, 2.4, 7 TeV
- we observed the increase of mean energy flow with centre-of-mass energy and the sensitivity to events with a rapidity gap in CASTOR.
- CASTOR can make a relevent measurement and improve the UE modeling at very high eta.
- first results on forward energy flow ratio in CASTOR are coming soon

Backup Slides

- hadronic section
- absorber: tungsten plates of
- active material: fused silica plates
- 5 tungsten-quartz sandwiches
- total interaction length (2+12 r.u.) 10.3 λ_l

- electromagnetic section
- absorber: tungsten plates of 5mm thickness
- active material: fused silica plates of 2mm thickness
- 5 tungsten-quartz sandwiches form 1 reading unit
- total radiation length (2 reading units) =20.12 X₀

CASTOR signal generation

6

