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Outline

I Parton saturation in QCD at weak coupling

I Gravitational shockwaves and “nuclei” in “modified”

N = 4 SYM

I DIS off “nuclei” at strong coupling

I Parton saturation at strong coupling



Logarithmic Plane in QCD
Λογαριθμικό επίπεδο
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Nucleus Properties

I Energy density of a fast right mover along x+?

I Characteristic scale Λ

I Energy conservation  x+-independence

T−− = γ2N2
c Λ4 f(x⊥Λ)

L

γ
δ(x−)⇒ E = γN2

c Λ2L

I N2
c constituents per unit volume to use AdS/CFT



Gravity Dual

I Deform AdS5 metric ↔ vacuum

ds2 =
R2

z2

[
dz2 − 2dx+dx− + dx2

⊥ + h(z, x−, x⊥)(dx−)2
]

Boundary gauge theory at z = 0

I Correspondence relates metric to energy momentum

tensor (nucleus)

T−− =
R3

4πG5

h(4) =
N2
c

2π2
h(4)

Need T−− to scale like N2
c , otherwise perturbation

parametrically small



Einstein Equations

I Solve Einstein eqns in transverse momentum space

h =
1

2
(k⊥z)2

[
c1(x−, k⊥)K2(k⊥z) + c2(x−, k⊥)I2(k⊥z)

]
I Which solution to accept?

Choices in similar situations

I Janik, Peschanski: c1 = 0, k⊥ = 0↔ homogeneous

I Gubser et al. Sourced Einstein eqns → z4 close to the

boundary, 1/z2 deep in the bulk

I Beuf c2 = 0 to kill divergence at large z



Putting the Cutoff

I Choose I2 solution with cutoff such that zk⊥ . 1

I h encodes momentum spectrum of quantum fluctuations

h→ const as z → 0 means flat spectrum at high k⊥

1/k4
⊥ is not ideal, but seems better

I Back to transverse coordinate space with only I2 part

h = 2π2γΛ4Lf(x⊥Λ)δ(x−)z4

approximate solution for z . 1/Λ

f(x⊥Λ) dim-less, vanishes for x⊥ & 1/Λ

I Cutoff ↔ IR scale of gauge theory



Deep Inelastic Scattering

I Gauge theory: Left moving R-current or J = 1
4
(F a

µν)
2 off

nucleus or plasma

I Lorentz invariants of kinematics x,Q2

Q2 > 0 virtuality of spacelike current

x =
Q2

s
=
−2q+q−

2q−γΛ

I Structure function

F (x,Q2) = ImΠ(x,Q2) = FT〈J(x)J(y)〉

I We shall be interested in the regime Q� Λ, x� 1.



Eikonal gravitational scattering

I For J ∼ (F a
µν)

2 solve EOM for dilaton field

I Shockwave structure allows iterative solution

What is meaning of δ-function in scattering?

width ∼ L

γ
� tcoh ∼

q−

Q2
=

1

xγΛ
⇒ xΛL� 1

I Iteration: Resum all multi-graviton exchanges

Π =
Q6ΛN2

c

32π2xL

∫
dz zK2

2(Qz)

∫
d2b⊥T (z, b⊥)

z ∼ transverse size of fluctuation

Typically fluctuations of size 1/Q scatter off nucleus



From Eikonal back to Single

I Scattering described by

T = i

[
1− exp

(
i
q−h̃

2

)]

exponent ∼ nucleus energy

I In OPE language: Multi graviton exchange ↔ higher

twist from energy momentum tensor

I In single scattering approximation

Π(x,Q2) =
N2
c Λ2Q2

10x2

Real, structure function vanishes, no partons at high Q2.



Unitarity (Saturation)

I First contribution to Im part from 2-graviton exchange

Should keep all orders result when T (1) ∼ O(1)

T (1) =
π2Λ3Lf(b⊥Λ)

Q2x

I Unitarity (saturation) line

Q2
s(x, b⊥) =

π2Λ3L

2x
f(b⊥Λ)

Energy dependence of single scattering →
x-dependence of saturation line

Nuclear energy profile → saturation profile



Structure function at saturation

I Similar for R-current DIS (closer to E/M current)

Consider homogeneous case

T exactly the same → Q2
s the same

(should not depend on the “probe”)

F2 =
N2
cQ

4

16π3ΛL

∫
dz z

[
K2

0(Qz) + K2
1(Qz)

]
ImT

I Unitarity  F2 saturates for Q� Qs

F2(Q . Qs) '
N2
c

64π3

Q2

ΛL
ln
Q2
s

Q2

Similar to QCD result



Parton Saturation

I Gluon occupation number in QCD at saturation

n(x, k⊥) ≡ 1

N2
c πR

2

dxG(x,Q2)

dQ2

∣∣∣
Q=k⊥

∼ 1

λ
ln
Q2
s

k2
⊥

Saturates at O(1/λ) modulo mild logarithmic increase

I Occupation number at strong coupling?

Energy density in terms of structure function (sum rule)

n(x, k⊥) ∼ 1

xγΛ

1

N2
c

dE

d2b⊥d2k⊥
∼ 1

N2
c

ΛL
dF2

dQ2

∣∣∣
Q=k⊥

∼ ln
Q2
s

k2
⊥

Saturation with maximal value of O(1)



Conclusions - Outlook

I Introduce cutoff to shockwaves solutions

I How does cutoff affect shockwave scattering?

I Seems we can introduce the concept of parton

I High energy  parton saturation

I Saturation momentum Q2
s ∼ Λ3L/x



Small-x and BFKL Equation

I Gluon emission from gluon or quark at high-energy

Emission probability dP ' αCR
π

dk2
⊥

k2
⊥

dx

x
I One intermediate gluon

Relative factor from propagator integration αs ln
1

x



Small-x and BFKL Equation

I n-intermediate gluon emissions  factor
(
αs ln

1

x

)n
I Resum of (αs ln 1/x)n terms of perturbation series

BFKL evolution equation (Balitsky, Fadin, Kuraev, Lipatov)

For unintegrated gluon distribution function

∂fg(x, k
2
⊥)

∂ ln 1/x
= ᾱs

∫
d2`⊥K(k2

⊥, `
2
⊥)fg(x, `

2
⊥)

I Emitted partons can have same size

 High partonic density fg ∼ x−ωP

 Large cross section σ ∼ sωP



Data of Gluon Distribution Function

∆εδομένα γλουονικής συνάρτησης κατανομής

H
1 

C
ol

la
bo

ra
tio

n

Γιατί (απότομη) αύξηση σε μικρό x;
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Fig. 15. Parton distributions extracted from combined fits to the H1 and ZEUS
data at HERA, which illustrate the evolution with decreasing x at fixed Q2. Left:
the rise in the gluon distribution. Right: the 1/x-evolution of the gluon, sea quark,
and valence quark distributions for Q2 = 10 GeV2 (note that the gluon and sea
quark distributions have been reduced by a factor of 20 to fit inside the figure).

unitarity of the S-matrix. (A similar bound holds for the pp collisions to
be studied at LHC.) There are also physical arguments which are supported
by explicit calculations within pQCD and which are telling us what should
be the physical mechanism responsible for taming this growth: this is gluon
saturation. With increasing energy, the gluon density increases as well and
eventually it becomes so high that the gluon start interacting with each
other — meaning that the evolution starts to be non-linear — and these
interactions limit the further growth of the gluon occupation number.

To understand the relevance of the occupation number — a concept that
will be important at strong coupling as well — notice that, in order to inter-
act with each other, the gluons must overlap, meaning that not only their
number, but also their (longitudinal and transverse) sizes, should be large
enough. At high-energy, the proton is Lorentz contracted — it looks to the
virtual photon like a pancake — so all the partons within a longitudinal
tube at a given impact parameter can interact with the photon and also
with each other. This argument must be corrected for the uncertainty prin-
ciple, but it is essentially correct: the small-x partons, with longitudinal
momenta kz ≃ xP , are delocalised in z over a distance ∆z ∼ 1/xP , which
is of the same order as the longitudinal wavelength of the virtual photon6.

6 The last statement is strictly true in the Breit frame to be introduced in Sect. 5.4.



Saturation and Color Glass Condensate

I Estimation of maximal allowed density in QCD

a†a ∼ AA ∼ 1/g2 ∼ 1/αs

I Gluon emitted in presence of strong background field

Color Glass Condensate

I Coherent effects - saturation of emission rate

P (fg) ∼ 1− e−αsfg

Mild logarithmic, in 1/x, increase of gluon distribution

I Evolution equations acquire nonlinear terms

∼ −f 2
g (x, k2

⊥), ... (...)

I Take elegant form in terms of specific observable



Sum Rule and Saturation Momentum

I From single scattering approximation (high Q2)

Analyticity and contour integration∫ 1

0

dxF2(x,Q2) =
11

120
N2
c Λ2

Integral dominated by x . xs(Q
2)

xs F2(xs, Q
2)︸ ︷︷ ︸

∼Q2N2
c /ΛL

∼ N2
c Λ2 ⇒ Q2

s ∼
Λ3L

x


