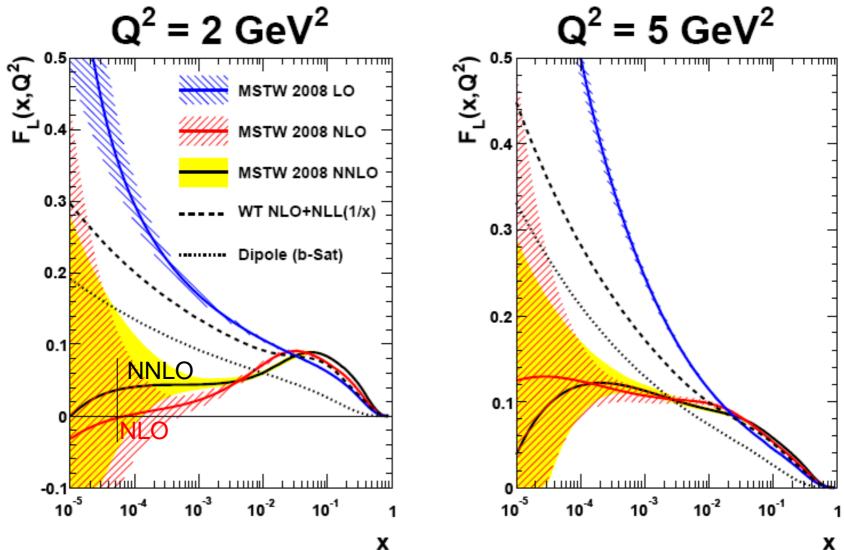
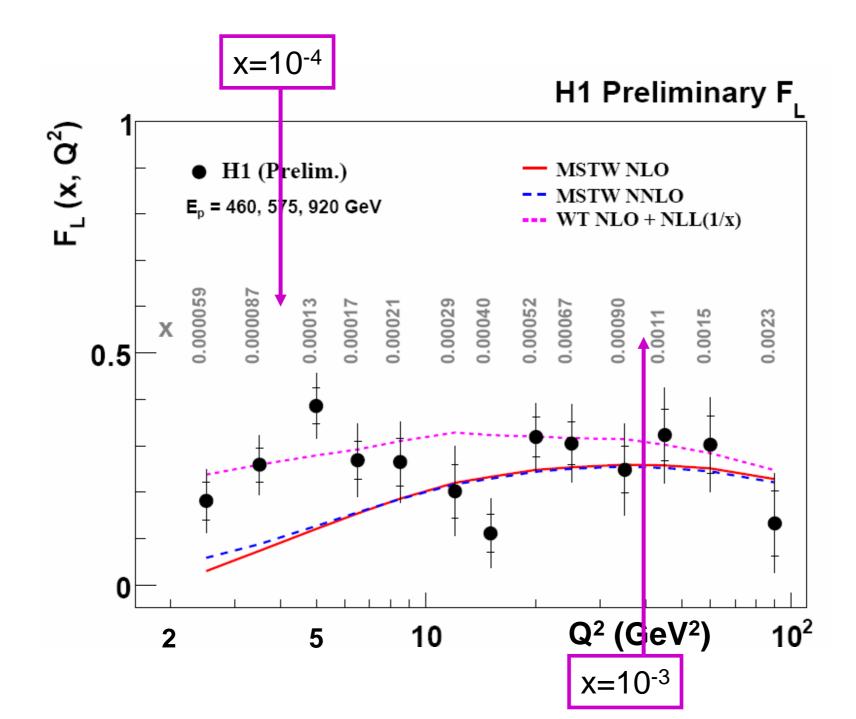
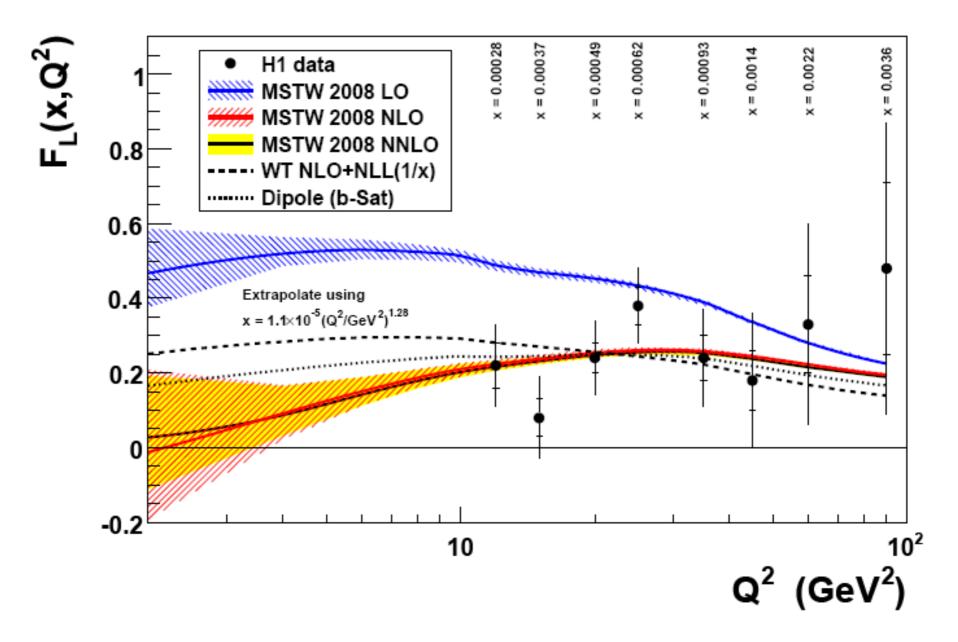
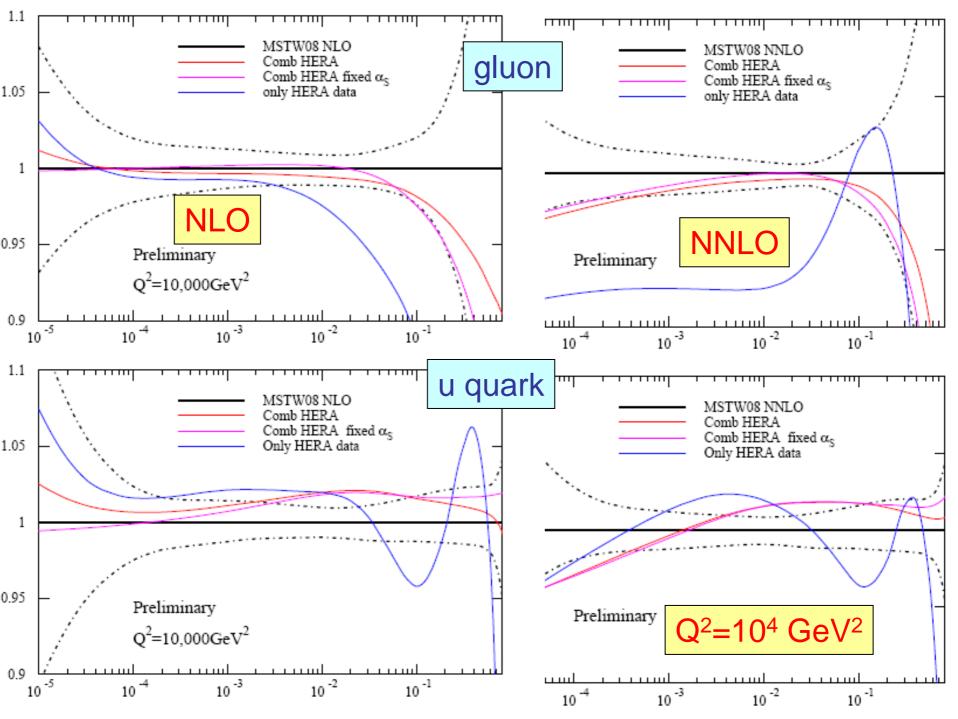


The low x gluon

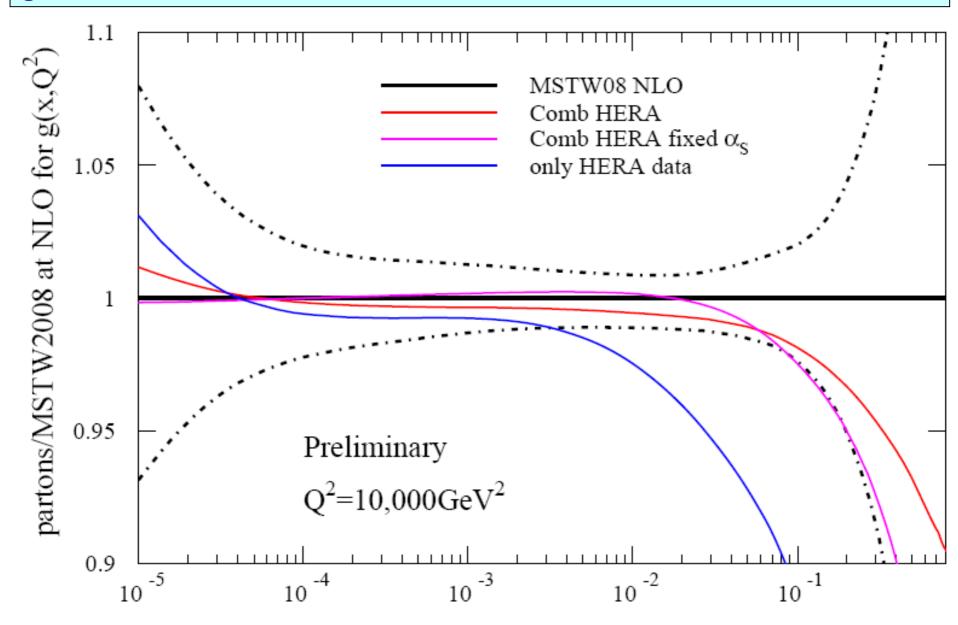

Beyond LO the gluon does not have a simple probabilistic interpretation --- and can be negative --- particularly at small x where HO perturbative corrections are large.


At small-x there is large order-by-order change in the splitting functions, particularly P_{qg} , making the evolution of quarks quicker and the NLO, NNLO... gluons smaller (and valence-like). Including higher twists in F_2 gives little change.

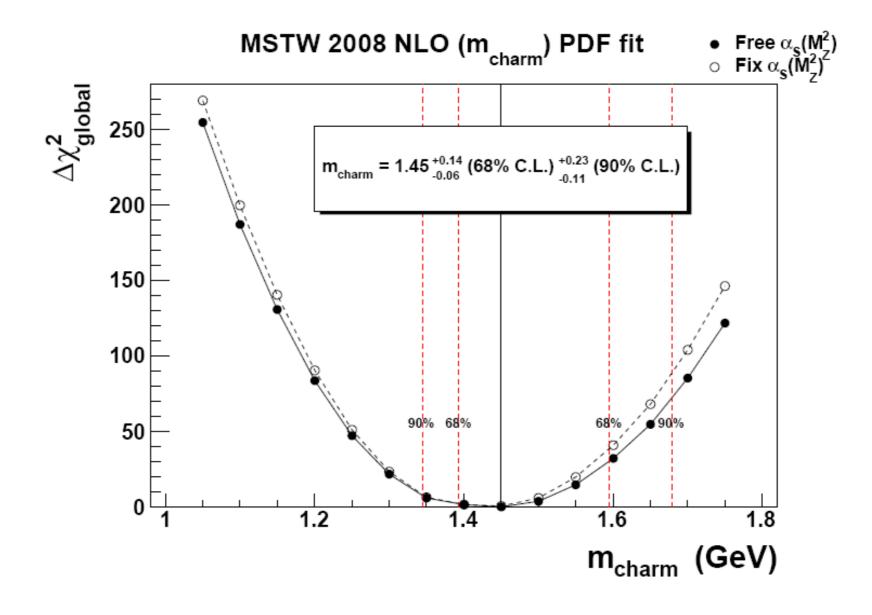

F_L


The coeff. fn. $C_{L,g}^{NNLO}$ gives a large positive contribution to F_L and counters the decrease in the small-x gluon. The lack of perturbative stability of F_L may be due to HT contributions from renormalons in the quark sector (TW): $F_L^{HT} \sim AF_2/Q^2$, e.g. ~0.1 for x=10⁻⁴ and Q²=2 GeV². Similar is resum of NLL(1/x). Also, different is dipole picture.

Low x, low Q^2 prediction of F₁ from MSTW 2008



gluon at Q²=10⁴ GeV² from combined HERA data vs MSTW2008



Global fits including the new H1,ZEUS combined data

α_{s}	PDF set	$B_{l^+l^-} \cdot \sigma_Z(nb)$	$\sigma_H(\text{pb})$	$B_{l+l-} \cdot \sigma_Z(\mathbf{nb})$	$\sigma_H(\text{pb})$	
S	NLO	Tevatron		LHC (14 TeV)		
0.1202	MSTW08	$0.243^{+2.4\%}_{-2.0\%}$	$0.746^{+5.0\%}_{-4.4\%}$	$2.00^{+2.1\%}_{-1.8\%}$	$40.7^{+3.0\%}_{-2.7\%}$	
0.1215	Comb HERA	+3.1%	-0.7%	+2.5%	+1.2%	
	fix $\alpha_S(M_Z^2)$	+3.0%	-4.0%	+1.8%	-0.8%	
	NNLO	Tevatron		LHC (14 TeV)		
0.1178	MSTW08	$0.251^{+2.2\%}_{-1.8\%}$	$0.955^{+5.4\%}_{-4.8\%}$	$2.05^{+2.6\%}_{-2.1\%}$	$50.5^{+3.6\%}_{-2.7\%}$	
0.1171	Comb HERA	+3.0%	-0.1%	+0.8%	+0.3%	
	fix $\alpha_S(M_Z^2)$	+3.0%	-2.5%	+0.4%	-1.1%	

If fit to only H1,ZEUS combined data and other CC,NC HERA data, then

0.123 NLO { gluon reduced, q's dramatically changed, 0.127 NNLO { v.poor description of non-HERA data

PDG running mass

$$m_c(\mu = m_c) = 1.27 \stackrel{+0.07}{_{-0.11}} \text{GeV}$$

corresponds to pole mass

$$m_c = 1.27 \text{ GeV} \times 1.3 = 1.65 \text{ GeV}$$

which is in excess of MSTW NLO global fit value of

$$m_c = 1.45 + 0.16 - 0.06 \text{ GeV}$$

worse agreement at NNLO.

MSTW await combined charm data

Effect of value of m_c on collider cross sections

Variable $\alpha_S(M_Z^2)$		Tevatron		LHC		LHC				
		$(\sqrt{s} = 1.96 \text{ TeV})$		$(\sqrt{s} = 7 \text{ TeV})$		$(\sqrt{s} = 14 \text{ TeV})$				
$m_c \ (\text{GeV})$	$m_b \; (\text{GeV})$	$\delta \sigma_W$	$\delta \sigma_Z$	$\delta \sigma_H$	$\delta \sigma_W$	$\delta \sigma_Z$	$\delta \sigma_H$	$\delta \sigma_W$	$\delta \sigma_Z$	$\delta \sigma_H$
1.05		-2.6	-2.8	+0.4	-4.1	-4.6	-2.4	-5.1	-5.5	-3.8
1.10		-2.2	-2.4	+0.2	-3.5	-3.9	-2.1	-4.3	-4.7	-3.3
1.15		-1.8	-1.9	+0.1	-2.9	-3.3	-1.8	-3.6	-3.9	-2.8
1.20		-1.4	-1.5	+0.1	-2.3	-2.6	-1.5	-2.8	-3.1	-2.3
1.25		-1.0	-1.1	0.0	-1.7	-1.9	-1.2	-2.1	-2.3	-1.7
1.30		-0.7	-0.7	0.0	-1.1	-1.3	-0.8	-1.4	-1.5	-1.2
1.35		-0.3	-0.4	0.0	-0.6	-0.6	-0.4	-0.7	-0.8	-0.6
1.40	4.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.45		+0.3	+0.3	0.0	+0.6	+0.6	+0.4	+0.7	+0.8	+0.6
1.50		+0.6	+0.6	0.0	+1.1	+1.3	+0.8	+1.3	+1.5	+1.2
1.55		+0.8	+0.9	+0.1	+1.6	+1.9	+1.2	+2.0	+2.3	+1.8
1.60		+1.1	+1.2	+0.2	+2.1	+2.5	+1.8	+2.6	+3.0	+2.5
1.65		+1.3	+1.5	+0.1	+2.6	+3.0	+2.0	+3.2	+3.7	+2.9
1.70		+1.5	+1.8	+0.2	+3.1	+3.6	+2.5	+3.8	+4.4	+3.6
1.75		+1.8	+2.0	+0.3	+3.5	+4.2	+2.9	+4.3	+5.1	+4.1