

Andrei Rostovtsev

Moscow, ITEP

Low-x Meeting, June 2010

There exists a large body of high precision experimental data on hadron production in high energy particle collisions.

Collisions	Energy Range	Experiments
Proton – Proton	23 – 2360 GeV	ISR, SppS, CDF, CMS
Gamma - Proton	200 GeV	H1, ZEUS, Omega
Gamma - Gamma	100 GeV	Opal, L3
DIS	120 - 213 GeV 7 < Q ² < 28 GeV ²	H1, ZEUS
Aurum - Aurum	200 Gev	RHIC

Transverse Momentum Spectra of Charged Particles

$$E_T^{kin} = \sqrt{p_T^2 + m_\pi^2} - m_\pi$$

A single smooth Tsallis-type function for the whole kinematical region

A common statistical distribution in the Nature.

Does Tsallis-type power law distribution really describe the hadron production spectra?

To answer this question let's plot a ratio = data / fit function

On both plots one observes a shallow dip at E_{\mp} values below 1 GeV followed by a broad bump above 1 GeV.

These defects are hidden on usual logarithmic plots!

Observed systematic defects require to modify the fit function

A modification of the Tsallis function

The best fits are given by $A_e \cdot \exp(-E_T^{kin}/T_e) + A/(1+P_T^2/TN)^N$

Look back at the Ratios = data / fit function

A strong correlation between the fit-function parameters

Fit-function: $A_e \cdot \exp(-E_T^{kin}/T_e) + A/(1+P_T^2/TN)^N$

The observed correlation might indicate that the exponential and power law terms are integral parts of more complicated function describing the statistical distribution.

Modified spectrum fit-function. Interpretation.

Exponential term – "thermolized" hadrons, or a hadronic cloud accompanying the interactions. Boltzmann-type.

<u>Power-law term</u> – originates from partonic hard interactions?

The modified function could be rewritten as:

$$\frac{d\sigma}{dP_T^2}(y \approx 0) = A_e \cdot \exp(-E_T^{kin}/T_e) + A/(1 + P_T^2/TN)^N =$$
$$= A_e \cdot \exp(-\varepsilon) + A/(1 + \varepsilon^2/bN)^N$$
with $\varepsilon = \frac{E_T}{T_e}$

The fit-function parameter map

 $rac{d\sigma}{dP_T^2}$ $= A_{e} \cdot \exp(-E_{T}^{kin} / T_{e}) + A / (1 + P_{T}^{2} / TN)^{N} \quad \longleftarrow$ T=18.11T²

Observations made with the fit parameter map

- 1. There are two distinct trends:
 - with change of \sqrt{s} in pp
 - for different colliding particles and fixed \sqrt{s}
- 2. The two trends cross each other in a point
 - with $\sqrt{s} = 200$ GeV in pp and Au-Au
 - for minimum bias centrality in Au-Au
- 3. DIS, γp , $\gamma \gamma$ sit on the same band as Au-Au with different centralities and look similar to very peripheral Heavy Ion interactions

Surprise:

Heavy Ion low centrality (multiplicity) presumably very peripheral interactions differ significantly from single pp-interactions and at the same time are "close relatives" of interactions with photons. <u>Further observations: relative contributions of the</u> <u>exponential and power-law terms in the spectra</u>

Power law term fraction in pp spectra as function of \sqrt{s}

Power law term fraction as function of centrality in Au-Au at $\sqrt{s}=200$ GeV

- In pp interactions: exp / power-law \approx 4 independent of \sqrt{s}
- Power-law fraction has maximum at mid centralities in Heavy Ion int.
- What is about "point-like" ineractions?

In DIS, γp , $\gamma \gamma$ the power-law contribution dominates (~100%)

Inclusive J/Ψ production doesn't leave any room for the exponential term in the spectrum shape

More surprises in high-Pt data

 $\chi^{2}/\text{ndf} = 513.8/234 \qquad \chi^{2}/\text{ndf} = 249.1/232$ $\frac{d\sigma}{dP_{T}^{2}} = A_{1} \cdot (1 + E_{T}^{kin} / T_{1} / N_{1})^{N_{1}} + A_{2} \cdot (1 + E_{T}^{kin} / T_{2} / N_{2})^{N_{2}}$ $A_{1} / A_{2} \approx 10^{3}; \quad T_{1} = 0.17 \quad T_{2} = 0.89 \text{ GeV}; \quad N_{1} = 8.5 N_{2} = 5.8$

For $P_T > 80$ GeV is of order of inclusive jet cross section Only at CDF?

The onset of high-Pt power-law tail in gamma collisions

The onset of the high- P_T power-law term is visible for: $P_T > 10 \text{ GeV}$ in pp - collisions $P_T > 4 \text{ GeV}$ in γp - collisions $P_T > 3 \text{ GeV}$ in $\gamma \gamma$ - collisions

Disagreement with CDF jet spectrum & Fragmentation (A.S.Yoon et al)

Two different regimes for charged hadron production?

Diffraction-type dips in the inclusive particle spectra?

Provocative examples of the data to fit ratio:

The only two accurate sets of pp-data extended to high P_T

Looking forward to see the LHC (7 GeV) spectra soon.

Conclusions:

• the large body of high precision data on hadron production in collider experiments allow systematic measurements of the fine details of the spectra shape;

• a simple power law type statistical distribution (Tsllis, kappa, Levy,...) provides a good approximation, but fail to describe the details of spectra shape both al low and high Pt;

• a modified statistical distribution is proposed

• despite the hadron spectra have been studied for decades, there is a number of puzzles to be solved:

- 1. Hadron production parameter map
- 2. High PT tails
- 3. Dips

Wanted:

High statistics LHC charged particle spectra.