PITT-PACC Workshop: Muon Collider Physics

Physics at Higgs factories

Zhen Liu
University of Maryland
(→University of Minnesota)
12/01/2020

Exciting Muon Collider Program ahead Physics Driver

future collider is a fliggs Wh. 2h, 4h

Physics at Higgs Factories

PITT-PACC MuC Workshop

Zhen Liu

12/01/2020

Outline

- Overall picture
- Higgs Width
- Higgs Couplings
- Higgs Exotic Decays

Mark Palmer's talk (as well as talks by Diktys Stratakis, Daniel Schulte, Nadia Pastrone) nicely addressed the technological status of a 125 GeV Higgs factory.

Here I focus on the unique physics capabilities.

the 14TeV
50 pb
3 abil
0.15 billion Higgs

Clean lepton collider environment mætters!

6,6 ete-242~2506eV 200 fb 1 million Highs

125 GeV 20 thorsand Higgs

Higgs Coupling Fit (Future Collider Standalone)

ECFA Higgs study group '19

Higgs Coupling Fit (HL-LHC+Future Collider)

ECFA Higgs study group '19

Christophe Grojean

Synergy ee-hh

Higgs@Future Colliders WG

FCC-hh without ee could still bound BRiny

but it could say nothing about BR_{unt}

FCC-hh is determining top Yukawa through ratio tth/ttZ So the extraction of top Yukawa heavily relies on the knowledge of ttZ from FCC-ee

kw improves significantly with energy increase

But it also benefits a lot from a synergy with EW measurements. This cannot be captured by the kappa's and requires a full EFT analysis

Switch to a representative view (CEPC/FCC-ee/ILC)

Without external constraints on the coupling strength (width), HL-LHC fit has huge flat direction (the fit does not close)*

*since LHC width measurement is poor, putting a universal floor of around 10%~20% for LHC measurements interpreted in this framework, assuming additional input from off-shell ZZ measurements to bound the Higgs total width)

Higgs factories improves in b, c, g, W, and especially Z coupling.

HL-LHC provide crucial inputs for muon Yukawa, Higgs to \gamma\gamma, etc.

Outline

- Overall picture
- Higgs Width
- Higgs Couplings
- Higgs Exotic Decays

Measurements to be interpreted

Observables at the colliders are the cross sections, a convolution of PDF (including CEPC, treating the beam energy spread), hard scattering, parton shower, detector response ... $\kappa_i = rac{g_i}{g_i^{SM}}$, $\kappa_\Gamma = rac{\Gamma_{tot}}{\Gamma_{tot}^{SM}}$

For the hard scattering*:

$$\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{\Gamma}}$$

(Almost) all channels can be parametrized this way, simple extension possible for more channels/observables.

> *zero-width approximation, Higgs width 10^{-5} of its mass, in general valid. Violations (% level correction) see Campbell, Carena, Harnik, ZL et al, 1704.08259

Measurements to be interpreted

Observables at the colliders are the cross sections, a convolution of PDF (including CEPC, treating the beam energy spread), hard scattering, parton shower, detector response ... $\kappa_i = \frac{g_i}{g_i^{SM}}, \kappa_{\Gamma} = \frac{\Gamma_{tot}}{\Gamma_{tot}^{SM}}$

For the hard scattering:

$$\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{\Gamma}}$$

If $\kappa_{\Gamma} = \kappa_i^2 \kappa_j^2$, the observed rates do not change.

- All κ s are positively correlated with the total width (from the point of cross sections);
- The naïve scaling of $\kappa_{tot} \propto \kappa_{i,f}^2$, does not reflect this flat direction, one needs additional particle width to enter.
- This highlights the importance and complementarity of the exotic decay program.

***Flat direction is not disastrous, just give some seemingly worse results when projected to useful basis.

Resolving flat direction: e+e-'s option

For the hard scattering:

$$\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{\Gamma}}$$
If $\kappa_{\Gamma} = \kappa_i^2 \kappa_j^2$, the observed rates do not change.

This leads to a large flat direction of the Higgs coupling extraction, the future lepton colliders such as ILC/FCC-ee/CEPC can handle this by the unique inclusive cross section measurement

$$\sigma(ee \to ZH, H \to anything) \propto \kappa_Z^2$$

Unique physics for 250~400 GeV lepton collider, direct determination of the HZZ coupling. At higher energies, one might rely on ZZ-fusion for such a inclusive measurement (Han, ZL, Qian, Sayre, <u>1504.01399</u>).

PP collider closes the fit by assuming zero $\Gamma_{undetected}$ or $|\kappa_V| < 1$

Hitting the resonance & scan

$\sigma(\mathrm{BW})$	ISR alone	R (%)	BES alone	BES+ISR
$\mu^{+}\mu^{-}$: 71 pb	37	0.01	17	10
	31	0.003	41	22

Han, ZL, <u>1210.7803</u>; With ISR effects Greco, Han, ZL, <u>1607.03210</u>

$$\sigma(\mu^{+}\mu^{-} \to h \to X) = \frac{4\pi\Gamma_{h}^{2} \text{Br}(h \to \mu^{+}\mu^{-}) \text{Br}(h \to X)}{(\hat{s} - m_{h}^{2})^{2} + \Gamma_{h}^{2} m_{h}^{2}}.$$

$$\sigma_{\text{eff}}(s) = \int d\sqrt{\hat{s}} \; \frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} \; \sigma(\ell^+\ell^- \to h \to X)(\hat{s})$$

Extreme (good) Case:

Energy Spread much narrower than the physical width:

 Δ = 0.3 MeV $\Gamma_{\rm h}$ = 4.2 MeV

Breit-Wigner
Gaussian Profile (beam)
Overlap (observable rate)
Effective cross section
(observable scan)

Recall: Z scan @LEP Γ = 2.5 GeV

12/01/2020

Extreme (bad) Case:

Energy Spread much broader than the physical width:

$$\Delta = 50 \text{ MeV}$$

$$\Gamma_{\rm h}$$
 = 4.2 MeV

Breit-Wigner

Gaussian Profile (beam)

Overlap (observable rate)

Effective cross secti

(observable sca<mark>n</mark>

Recall: $J/\psi \operatorname{scan} \Gamma \approx 93 \text{ keV}$

Close to reality:

Energy Spread comparable to the physical width:

$$\Delta$$
 = 5 MeV
(R=0.003%)
 $\Gamma_{\rm h}$ = 4.2 MeV

Breit-Wigner Gaussian Profile (beam) Overlap (observable rate) **Effective cross section** (observable scan)

An optimal fitting would reveal Γ_h

12/01/2020

Fitting the SM Higgs

$\Gamma_h = 4.07 \mathrm{MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h \; (\mathrm{MeV})$	δB	$\delta m_h \; ({\rm MeV})$
R = 0.01%	0.05	0.79	3.0%	0.36
	0.2	0.39	1.1%	0.18
R = 0.003%	0.05	0.30	2.5%	0.14
h = 0.003%	0.2	0.14	0.8%	0.07

Outline

- Overall picture
- Higgs Width
- Higgs Couplings
- Higgs Exotic Decays

Where would MuC Higgs factory stand?

PP

Table 1-18. Muon collider statistical precisions on Higgs production rates into various final states X from a 5-point energy scan centered at m_H with a combined yield of 39,000 Higgs bosons. The $\tau\tau$ uncertainty is an average of asymmetric uncertainties. The rates are proportional to $\mathrm{BR}(H\to\mu\mu)\times\mathrm{BR}(H\to X)\propto\kappa_{\mu}^2\kappa_X^2/\Gamma_H^2$. Snowmass Higgs Report 1310.8361

Final state	$bar{b}$	WW^*	au au	$c\bar{c}$	gg	$\gamma\gamma$	ZZ^*	$Z\gamma$	$\mu\mu$	Γ_H	m_H
$\sigma(\mu\mu \to H \to X)$	9%	5%	60%	_	_	_	_	_	_	4.3%	$0.06~{ m MeV}$

50 pb

3 abilion offigs

200 fb

[million Hiszs

20 PB 1 fb

20 thousand His

HOPE LESS?

General κ fit (so called "model independent fit")

ΔM_H	Γ_H $\sigma($	ZH)
$5.5~\mathrm{MeV}$	2.8%	0.51%
CEPC	per channel preci	sion
Decay mode	σ	$(ZH) \times BR$
H o bb	_	0.28%
$H \rightarrow cc$	Signature numbers	2.2%
H o gg	κ_{Γ} 2.8%	1.6%
$H \to \tau\tau$	κ_z 0.25%	1.2%
$H \to WW$	κ_b 1.3% $\kappa_ au$ 1.5%	1.5%
$H \to ZZ$	κ_{τ} 1.370	4.3%
$H \to \gamma \gamma$		9.0%
$H o \mu \mu$		17%
$H \to \mathrm{inv}$		0.28%

New Insight: the total width sets a floor for the individual coupling extraction as:

$$\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{\Gamma}} \Rightarrow$$

$$\Delta \kappa_j = 1/2(\Delta \kappa_j^2)$$

$$= 1/2(\Delta \kappa_{\Gamma} \bigoplus \Delta \sigma(i \to H \to j) \bigoplus \Delta \kappa_i^2)$$

Constrained κ fit (No BR(undetectable)—Width not free)

New Insight: The total width (still!) sets a floor for the individual coupling extraction.

- Can be compared with the HL-LHC
- Large improvement (~one order of magnitude)
- Result improved from additional constraints
- Signature numbers
 - $\kappa_{\Gamma} 2.8\% \rightarrow (2.4\%)^*$
 - $\kappa_z = 0.25\% \rightarrow 0.13\%$
 - κ_b 1.3% \rightarrow 1.2%

*not a free parameter; but useful intermediate quantity
*Significant "improvement" for the κ_Z from the additional constraints (fit assumption are critical in comparing results, always be careful)

Now the Model-Independent MuC Width matters! Let's check precision with 1/50 statistics (with different bkg)

ΔM_H	Γ_H	$\sigma(ZH)$
5.5 MeV	2.8%	0.51%
CEPC per	channel	precision
Decay mode		$\sigma(ZH) \times BR$
H o bb		0.28%
$H \to cc$		2.2%
H o gg		1.6%
H ightarrow au au		1.2%
$H \to WW$		1.5%
H o ZZ		4.3%
$H o \gamma \gamma$		9.0%
$H o \mu\mu$		17%
$H \to \mathrm{inv}$		0.28%

	Br	Rate (pb)	Precision
Inclusive	100%	22	1
bbar	57.80%	12.72	1.7%
tautau	6.37%	1.40	18%
mumu	0.02%	0.00	2005%
cc	2.68%	0.59	25%
gg	8.56%	1.88	13%
γγ	0.23%	0.05	374%
WW*	21.60%	4.75	1.6%
ZZ*	2.67%	0.59	4.5%
invistble	0.01%	0.00	
Γ_{total}	4.2 (MeV)		3.3%

Good results with 1/50 (1/12) Higgs statistics!

- This MuC Width is a pure measurement, uncorrelated with all the other parameters;
- When combined with the HL-LHC, comparable to other lepton collider Higgs factories (except for kZ)
- Sub-percent muon Yukawa
- Good lumi scaling with couplings
- Excellent improvement when combined with CEPC (kb, kg, kW, kmu)

Good results with 1/50 (1/12) Higgs statistics!

- This MuC Width is a pure measurement, uncorrelated with all
 - the other pa
- When comb the HL-LHC comparable lepton collic factories (ex kZ)
- Sub-percent Yukawa
- Good lumi s couplings
- Excellent improvement when combined with CEPC (kb, kg, kW, kmu)

Precision of Higgs coupling measurement (7-parameter Fit)

HL-LHC S1/S2 (systematics)

CEPC 5.6 ab⁻¹ w/wo HL-LHC S2

(Honest to god) Disclaimer:

- Statistics (S/rootB) → Information; in this sense, 1/50 less statistics IS less information;
- What I show is when projected into the well-established bases, Higgs couplings (also true for EFT), 125 GeV MuC can do well due to less entangled correlations between width and other properties;
- A more physical take away is, the information gain at 125 GeV MuC is complementary to HL-LHC and future lepton colliders, even with 1/50 and 1/7500 data, as shown by how much improvement one gains through the combination. (Repetitive information only grow statistically; here 125 MuC provide new information with different correlation matrix.)

Outline

- Overall picture
- Higgs Width
- Higgs Couplings
- Higgs Exotic Decays

Why Exotic Decays?

• While most current searches focus on heavy BSM particles, there is a whole zoo of light BSM particle not well explored at colliders.

(checking all the possibility; theoretical interests.)

 $((H^+H)$ lowest mass dimensional spinless gauge singlet structure, easily a portal to BSM)

• The precision does not pin-point a scale, the exotic decays are to fully probe the scale below Higgs mass. **

(complementarity)

Why Exotic Decays? (continued)

• Higgs has tiny width ~4 MeV

$$\frac{\Gamma}{M} = O(10^{-5})$$

all its decay modes are suppressed by various factors, couplings, loop-factors, phase-space, etc.

Dominant decays into bottom quark pairs are suppressed by the tiny coupling $y_h = 0.017$

• small couplings to BSM could have sizable branching, e.g.,

$$L = \frac{\zeta}{2} s^2 |H|^2$$

(common building block in extended Higgs sectors) can give BR(h \rightarrow ss)~O(10%) for ζ as small as 0.01!

Exotic Decay Overall Picture

Our study on CEPC/ILC/FCCee only used Z(->ll)H, there is 10x statistics yet to be used.

125 GeV MuC: no tagging spectator Z issues and less combinatoric background.

with missing Energy (SUSY motivated, DM motivated channels)

3-4 orders of magnitude improvement for the constraints on such exotic branching fractions

 $h \rightarrow 4f$ generic Higgs sector extensions, also Higgs portals

2-3 orders of magnitude improvement for the constraints on such exotic branching fractions

Original plot without MuC, ZL, Wang, Zhang, <u>1612.09284</u>, updated by ZL following future collider program updates; MuC pre-preliminary results compiled by ZL.

Summary

- Overall picture
- Higgs Width
- Higgs Couplings

• Higgs Exotic Decays

Summary: Outlook

- Overall picture
- Higgs Width
- Higgs Couplings
- Higgs Exotic Decays

Many more to do:

A Comprehensive Physics Case for 125 GeV MuC Higgs Factory is "structured"

(Do we need it?)

Some core tasks:

- (Semi-)optimal scanning strategy development (width v.s. BES, step size, and step luminosity);
- Fast detector simulation for major Higgs channels for Higgs precision;
- Fast simulation for exotic decays;

The Dream Machine

This new set of analysis shows its unique physics cases with 10² less Higgs bosons. A physics-wise motivated step towards high energy MuC.

Thank you!

Physics Driver

Backup

Pinning down the mass of the Higgs

arxiv:1304.5270

	Br	Rate (pb)	Used Sig	Bkg Rate	Composed	Precision
Inclusive	100%	22	Rate		Bkg Rate	elimin
bbar	57.80%	12.72	10.30	18.71	21.24	1.72%
tautau	6.37%	1.40	0.59	9.50	ary 10.45	17.75%
mumu	0.02%	0.00	0.00	119.50	9.50	2005.62%
SS	0.04%	0.01	0.01	18.71	56.13	2447.71%
СС	2.68%	0.59	ary 0.59	19.66	21.53	25.23%
gg	8.56%	1.88	1.88	0.00	56.13	12.79%
γγ	0.23%	0.05	0.05	35.78	35.78	374.09%
WW*	21.60%	4.75	3.85	0.05	0.05	1.62%
ZZ* Jimi	2.67%	0.59	0.54	0.05	0.05	4.49%
invisible	0.01%	0.00				

$ \kappa_\gamma $	1.00	0.66	0.57	0.29	0.18	0.65	0.66	0.27
$\kappa_{ m W}$	0.66	1.00	0.58	0.39	0.25	0.74	0.59	0.27
$\kappa_{ m Z}$	0.57	0.58	1.00	0.24	0.24	0.56	0.50	0.23
$ \kappa_{ m g} $	0.29	0.39	0.24	1.00	0.34	0.67	0.43	0.09
$ \kappa_{ m t} $	0.18	0.25	0.24	0.34	1.00	0.38	0.26	0.09
$ \kappa_{ m b} $	0.65	0.74	0.56	0.67	0.38	1.00	0.70	0.26
$ \kappa_{ au} $	0.66	0.59	0.50	0.43	0.26	0.70	1.00	0.25
$ \kappa_{\mu} $	0.27	0.27	0.23	0.09	0.09	0.26	0.25	1.00
	$ \kappa_\gamma $	$\kappa_{ m W}$	$\kappa_{ m Z}$	$ \kappa_{ m g} $	$ \kappa_{ m t} $	$ \kappa_{ m b} $	$ \kappa_{ au} $	κ_{μ}

L = 3	000 fb-1	Expected uncertainty [9					
POI	Scenario	Total	Stat	SigTh	BkgTh	Expt	
κ_{γ}	S1	2.9	1.1	1.8	1.0	1.7	
	S2	2.0	1.1	0.9	8.0	1.2	
$\kappa_{ m W}$	S1	2.6	1.0	1.7	1.1	1.1	
	S2	1.8	1.0	0.9	8.0	8.0	
$\kappa_{ m Z}$	S1	2.4	1.0	1.7	0.9	0.9	
	S2	1.7	1.0	0.9	0.7	0.7	
$\kappa_{ m g}$	S1	4.0	1.1	3.4	1.3	1.2	
	S2	2.5	1.1	1.7	1.1	1.0	
$ \kappa_{ m t} $	S1	5.5	1.0	4.4	2.7	1.6	
	S2	3.5	1.0	2.2	2.1	1.2	
$\kappa_{ m b}$	S1	6.0	2.0	4.3	2.9	2.3	
	S2	4.0	2.0	2.0	2.2	1.8	
$\kappa_{ au}$	S1	2.8	1.2	1.8	1.1	1.4	
	S2	2.0	1.2	1.0	0.9	1.0	
κ_{μ}	S1	6.7	4.7	2.5	1.0	3.9	
	S2	5.0	4.7	1.3	8.0	1.1	

Exotic Decay Outlook

- Higgs Exotic decays is a very important component of Higgs program at future colliders
- Lepton colliders show great advantage for decays that are very challenging at the LHC, such as Higgs decays into jets and Higgs decays with missing energy
- Hadron colliders and lepton colliders are complementary* in probing Higgs exotic decays and could together provide a much more coherent picture for discovery
- Many more interesting work for Higgs exotic decays at both the LHC and future colliders are needed**:
 - More channels (potential statistical improvement)
 - Light masses
 - Semi-visible
 - Higgs into dark showers
 - Weird signatures (LLPs, Quirks, etc.)

Statistical limit

* LC usually have 1 Million clean Higgs boson produced, HL-LHC has 0.2 Billion.
Also complementary to the Z-pole runs of Lepton colliders. For instance, heavy neutral leptons (HNLs) are better probed at Tera-Z factories. Flavor non-Universal theories induced Higgs exotic decays, e.g., Chiu, ZL, Wang, 1909.04549
**See many of the Snowmass Energy Frontier LOIs