2HDM @ a High Energy Muon Collider

Shufang Su • U. of Arizona

T. Han, S. Li, SS, W. Su, Y. Wu, work in progress

Pittt-PACC Muon Collider Workshop Nov 30 - Dec 1, 2020

Outline

- Higgses in 2HDM
- Pair Production of BSM Higgs @ muon collider
- Fermion associated single production
- Conclusion

Why 2HDM?

Models with extended Higgs sector: arise in natural theories of EWSB

- Higgs sector of MSSM/NMSSM
- Generic 2HDM
- Little Higgs, twin Higgs ...
- Composite Higgs models ...
- SM+singlet: parametrized by a simple mixing parameter
- 2HDM: covers board class of known models
- Allow for convenient parametrization
- Many features shared by many extended EWSB sectors

2HDM Higgs Sector

Two Higgs Doublet Model (CP-conserving)

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix}$$

$$v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2$$

 $\tan \beta = v_u/v_d$

$$\begin{pmatrix} H^0 \\ h^0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}, \quad A = -G_1 \sin \beta + G_2 \cos \beta \\ H^{\pm} = -\phi_1^{\pm} \sin \beta + \phi_2^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses

CP-even Higgses: h, H, CP-odd Higgs: A, Charged Higgses: H±

- Search for extra Higgses
 - → Precision Higgs study: couplings of the SM-like Higgs
 - → Direct search of extra Higgses: direct evidence for BSM new physics S. Su

2HDM Higgs Sector

h/H VV coupling

$$g_{H^0VV} = \frac{m_V^2}{v}\cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v}\sin(\beta - \alpha)$$

Higgs-Higgs-V coupling

$$g_{AH^{0}Z} = -\frac{g\sin(\beta - \alpha)}{2\cos\theta_{w}}(p_{H^{0}} - p_{A})^{\mu}, \quad g_{Ah^{0}Z} = \frac{g\cos(\beta - \alpha)}{2\cos\theta_{w}}(p_{h^{0}} - p_{A})^{\mu},$$

$$g_{H^{\pm}H^{0}W^{\mp}} = \frac{g\sin(\beta - \alpha)}{2}(p_{H^{0}} - p_{H^{\pm}})^{\mu}, \quad g_{H^{\pm}h^{0}W^{\mp}} = \frac{g\cos(\beta - \alpha)}{2}(p_{h^{0}} - p_{H^{\pm}})^{\mu},$$

$$g_{H^{\pm}AW^{\mp}} = \frac{g}{2}(p_{A} - p_{H^{\pm}})^{\mu},$$

Two non-SM like Higgses have unsuppressed couplings to gauge boson.

Alignment limit

• h 125 GeV, cos(β-α)~0

Four Types of 2HDMs

• Flavor limits: Type I, Type II, lepton-specific, flipped,...

Types	Φ_1	Φ_2	κ_A^u	κ_A^d	κ_A^e
Type-I		u,d,ℓ	$\cot \beta$	$-\cot \beta$	$-\cot \beta$
Type-II	d,ℓ	u	$\cot \beta$	$\tan \beta$	$\tan \beta$
Type-L	ℓ	u, d,	$\cot \beta$	$-\cot \beta$	$\tan \beta$
Type-F	d	u,ℓ	$\cot \beta$	$\tan \beta$	$-\cot \beta$

Pair Production

Pair production

Annihilation

$$\mu^+\mu^- \to \gamma^*, Z^* \to H^+H^-$$

 $\mu^+\mu^- \to Z^* \to HA$

VBF

$$\mu^{+}\mu^{-} \to V_{1}V_{2} \to H^{+}H^{-}, HA, H^{\pm}H(A), HH/AA$$

Pair Production

Pair production

Pair Production

Pair production

Four Types of 2HDMs

Hbb ∞ tan β Hττ ∞ tan β

	production	Type-I	Type-II	Type-F	Type-L
	H^+H^-		$tar{\ell}$		
small $\tan \beta < 5$	HA/HH/AA		$t^{\frac{1}{2}}$		
	$H^\pm H/A$		$tar{t}$		
	H^+H^-		$tar{b},ar{t}b$	$tb, au u_{ au}$	
intermediate $\tan \beta$	HA/HH/AA	$oxed{tar{t},tar{t}} oxed{tar{t},bar{b}}$		$t\bar{t}, \tau^+\tau^-$	
β	$H^\pm H/A$	$tb, tar{t}$	$tb, tar{t}; tb, bar{b}$	5	$b, t\bar{t}; tb, \tau^+\tau^-;$
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$	
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$ $tar{b}, ar{t}$		$\tau^+ u_{ au}, au^- u_{ au}$
large $\tan \beta > 10$	HA/HH/AA	t ar t, t ar t	$t\bar{t}, t\bar{t}$ $b\bar{b}, b\bar{b}(au^+ au^-)$ $b\bar{b}, b\bar{b}(au^+ au^-)$		$\tau^+\tau^-, \tau^+\tau^-$
	$H^\pm H/A$	$\left \begin{array}{c c} tb, tar{t} & tb(au u_{ au}), bar{b}(au^+ au^-) \end{array} \right $		$tb, bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$

Hbb ∞ tan β Hττ ∞ tan β

	production	Type-I	Type-II	Type-F	Type-L
	H^+H^-		tt	$o, ar{t}b$	
small $\tan \beta < 5$	HA/HH/AA		$t ar{t}, t ar{t}$		
	$H^{\pm}H/A$		$tb, tar{t}$		
	H^+H^-	$tar{b},ar{t}b$			$tb, au u_ au$
intermediate $\tan \beta$	HA/HH/AA	$t ar{t}, t ar{t}$	$tar{t},bar{b}$		$t\bar{t}, au^+ au^-$
	$H^{\pm}H/A$	$tb, tar{t}$	$tb, tar{t}; tb, bar{b}$		$tb, t\bar{t}; tb, \tau^+\tau^-;$
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$	
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_ au)$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$
large $\tan \beta > 10$	HA/HH/AA	t ar t, t ar t	$b\bar{b}, b\bar{b}(\tau^+\tau^-)$	$bar{b}, bar{b}$	$\tau^+\tau^-, \tau^+\tau^-$
	$H^{\pm}H/A$	$tb, tar{t}$	$b(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb,bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$

Hbb ∞ tan β Hττ ∞ tan β

	I							
	production	Type-I	Type-II	Type-F	Type-L			
	H^+H^-		$tar{ar{b}},ar{t}b$					
small $\tan \beta < 5$	HA/HH/AA		$tar{t},tar{t}$					
	$H^\pm H/A$		$t\ell$					
	H^+H^-		$tar{b},ar{t}b$	$tb, au u_{ au}$				
intermediate tan R	HA/HH/AA	$\overline{tar{t},tar{t}}$ $tar{t},bar{b}$			$tar{t}, au^+ au^-$			
$ $ intermediate $\tan \beta$	$H^\pm H/A$	$tb, tar{t}$ $tb, tar{t}; tb, bar{b}$		-)	$tb, t\bar{t}; tb, \tau^+\tau^-;$			
				$\langle au u_{ au}, t ar{t}; \ au u_{ au}, au^+ au^- angle$				
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_ au)$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$			
large $\tan \beta > 10$	HA/HH/AA	$t ar{t}, t ar{t}$	$b\bar{b}, b\bar{b}(au^+ au^-)$	$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$			
	$H^\pm H/A$	$tb, tar{t}$	$b(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb, bar{b}$	$ au^\pm u_ au, au^+ au^-$			

Hττ ∝ tan β

Hbb ∞ tan β Hττ ∞ tan β

	production	Type-I	Type-II	Type-F	Type-L		
	H^+H^-		$tar{b},ar{t}b$				
small $\tan \beta < 5$	HA/HH/AA	$t ar{t}, t ar{t}$					
	$H^{\pm}H/A$		$t\ell$				
	H^+H^-	$tar{b},ar{t}b$			$tb, au u_{ au}$		
intermediate tan R	HA/HH/AA	$tar{t}, tar{t}$ $tar{t}, bar{b}$			$tar{t}, au^+ au^-$		
intermediate $\tan \beta$	$H^{\pm}H/A$	$tb, tar{t}$ $tb, tar{t}; t$		-)	$b, t\bar{t}; tb, \tau^+\tau^-;$		
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$			
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$	$t ar{b}, ar{t} b$	$ au^+ u_ au, au^- u_ au$		
large $\tan \beta > 10$	HA/HH/AA	$tar{t},tar{t}$	$b\bar{b}, b\bar{b}(au^+ au^-)$	$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$		
	$H^{\pm}H/A$	$tb, tar{t}$	$b(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb, bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$		

Hbb ∞ tan β Hττ ∞ tan β

	production	Type-II Type-II		Type-F	Type-L			
	H^+H^-		$tar{\ell}$					
small $\tan \beta < 5$	HA/HH/AA		$tar{t},tar{t}$					
	$H^{\pm}H/A$		$t\ell$					
	H^+H^-		$tar{b},ar{t}b$	$tb, au u_{ au}$				
intermodiate top Q	HA/HH/AA	$t ar{t}, t ar{t}$ $t ar{t}, b ar{b}$			$t\bar{t}, au^+ au^-$			
$ $ intermediate $\tan \beta$	$H^{\pm}H/A$	$tb, tar{t}$ $tb, tar{t}; tb, bar{b}$		-)	$tb, t\bar{t}; tb, \tau^+\tau^-;$			
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$				
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_ au)$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$			
large $\tan \beta > 10$	HA/HH/AA	$ig tar{t}, tar{t} \ ig bar{b}, bar{b}(au^+ au^-)$		$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$			
	$H^\pm H/A$	$tb, tar{t}$	$tb(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb,bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$			

Hττ ∝ tan β

	production	Type-I	Type-II	Type-F	Type-L
	H^+H^-		$tar{\ell}$		
small $\tan \beta < 5$	HA/HH/AA		$t\bar{t}$	$\overline{t},t\overline{t}$	
	$H^{\pm}H/A$		$t\ell$		
	H^+H^-	$tar{b},ar{t}b$			$tb, au u_{ au}$
intermediate $\tan \beta$	HA/HH/AA	$oxed{tar{t}, tar{t}} oxed{tar{t}, bar{b}}$		$t\bar{t}, au^+ au^-$	
β	$H^{\pm}H/A$	$tb, tar{t}$	$tb, tar{t}; tb, bar{b}$		$tb, t\bar{t}; tb, \tau^+\tau^-;$
				$\tau \nu_{\tau}, t\bar{t}; \ \tau \nu_{\tau}, \tau^{+}\tau^{-}$	
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$
large $\tan \beta > 10$	HA/HH/AA	$ \hspace{.06cm} t \bar{t}, t \bar{t} \hspace{.06cm} \hspace{.06cm} b \bar{b}, b \bar{b} (au^+ au^-) \hspace{.06cm} \hspace{.06cm} b \bar{b}, b$		$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$
	$H^{\pm}H/A$	$tb, tar{t}$	$b(\tau\nu_{\tau}), b\bar{b}(\tau^{+}\tau^{-})$	$tb, bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$

Hττ ∝ tan β

SM Backgrounds

Signal: four 3rd generation quarks/leptons

SM backgrounds

$$p_T(t) > 100 \text{ GeV}, \quad p_T(b) > m_{\Phi}/5, \quad 10^{\circ} < \theta < 170^{\circ}. \quad \Delta R_{bb} > 0.4$$

for H^+H^- channel: $m(t\bar{b}) > 0.9M_{H^{\pm}}$, $\theta_{tb} < 150^{\circ}$,

for HA channel: $m(t\bar{t})$, $m(b\bar{b}) > 0.9 M_{H/A}$, θ_{tt} , $\theta_{bb} < 150^{\circ}$.

(fb)	(ToV)	$t \bar{t} b \bar{b}$		$tar{t}tar{t}$		$bar{b}bar{b}$	
σ (fb) \sqrt{s} (TeV)	$\mu^+\mu^-$	VBF	$\mu^+\mu^-$	VBF	$\mu^+\mu^-$	VBF	
	6	6.7×10^{-4}	$\lesssim 10^{-13}$	_	_	_	_
H^+H^-	14	2.3×10^{-3}	1.1×10^{-4}	_	_	_	_
	30	1.4×10^{-3}	5.2×10^{-4}	_	_	_	_
	6	$1.4 \times 10^{-3*}$	4.0×10^{-8}	6.1×10^{-5}	$\lesssim 10^{-14}$	7.3×10^{-6}	$\lesssim 10^{-14}$
HA	14	1.7×10^{-3}	1.7×10^{-4}	9.0×10^{-4}	2.5×10^{-5}	1.4×10^{-4}	3.9×10^{-6}
	30	7.9×10^{-4}	6.8×10^{-4}	6.5×10^{-4}	1.7×10^{-4}	$\sim 10^{-4}$	2.7×10^{-5}

Can be sufficiently suppressed!

Fermion Associated Production

Fermion associated production

Annihilation

$$\mu^+\mu^- \to b\bar{b}H/A, \ t\bar{t}H/A, \ tbH^{\pm},$$

 $\to \tau^+\tau^-H/A, \ \tau^{\pm}\nu_{\tau}H^{\mp},$

VBF

$$\mu^{+}\mu^{-} \to b\bar{b}H/A, \ t\bar{t}H/A, \ tbH^{\pm}, \ t\bar{t}H^{\pm}, b\bar{b}H^{\pm}, tbH/A,$$
$$\to \tau^{+}\tau^{-}H/A, \ \tau^{\pm}\nu_{\tau}H^{\mp}, \tau^{+}\tau^{-}H^{\pm}, \tau^{\pm}\nu_{\tau}H/A.$$

12

Fermion Associated Production

Fermion associated production

Four Types of 2HDMs

Annihilation vs. VBF

	production	Type-I	Type-II	Type-F	Type-L			
amall tan B < 5	tbH^{\pm}	tb,tb						
small $\tan \beta < 5$	$t ar{t} H/A$	$tar{t},tar{t}$						
	(tbH/A)		($tb, tar{t})$				
	tbH^{\pm}		tb,tb	$tb, tb; tb, au u_{ au}$				
intermediate $\tan \beta$	$t ar{t} H/A$	$t \bar{t}, t \bar{t}$	$tar{t},tar{t};tar{t},bar{b}$		$t\bar{t}, t\bar{t}; t\bar{t}, \tau^+\tau^-$			
	$b ar{b} H/A$	H/A $ bar{b}, tar{t}; bar{b}, bar{b}$		$b,bar{b}$	_			
	(tbH/A)	$(tb,tar{t})$	$(tb, tar{t}; tb$	$\left (tb, t\bar{t}; tb, \tau^+\tau^-) \right $				
	tbH^{\pm}	tb, tb	$tb, tb(au u_{ au})$	tb, tb	$tb, au u_{ au}$			
large $\tan \beta > 10$	t ar t H/A	$tar{t},tar{t}$	_		$t\bar{t}, au^+ au^-$			
	$bar{b}H/A$	_	$b\bar{b}, b\bar{b}(\tau^+\tau^-)$ $b\bar{b}, b\bar{b}$		_			
	(tbH/A)	$(tb, tar{t})$ $(tb, bar{b})$		$(tb, \tau^+\tau^-)$				
$\frac{1}{1}$	$\tau^+\tau^-H/A$				$\tau^+\tau^-, \tau^+\tau^-$			
very large $\tan \beta > 50$	$ au u_ au H^\pm$		_	$ au u_{ au}, au u_{ au}$				

Conclusion

- High energy muon collider: discovery machine for BSM Higgses
- BSM Higgs pair production: annihilation dominant
- BSM Higgs single production in associated with fermion: VBF dominant
- SM BG: manageable
- possible to distinguish different types of 2HDM

An exciting journey ahead of us!