Neutrino Physics at a Neutrino Factory Patrick Huber Center for Neutrino Physics at Virginia Tech Muon Collider Physics Workshop November 30 – December 2, 2020 PITT PACC #### **Outline** - What is a neutrino factory? - Why should you care about neutrinos? - Neutrino mass is BSM - Window to theory of flavor - New interactions - Fermion portal aka sterile neutrinos - Summary & Outlook TLDR - a neutrino factory is the mother of all neutrino beams. #### **Traditional beam** Neutrino beam from π -decay - primary ν_{μ} flux constrained to 5-15% - ν_e component known to about 20% - anti-neutrino beam systematically different large wrong sign contamination - ν_e difficult to distinguish from NC events # Neutrino factory beam This requires a detector which can distinguish μ^+ from $\mu^- \Rightarrow$ magnetic field of around 1T - beam known to %-level or better - muon detection very clean - multitude of channels available, including ν_{τ} #### **Neutrino factories** IDS, 2010 nuSTORM, 2012 muon cooling for high luminosity high energy for BSM physics MAP/MASS, 2013 #### Neutrinos are massive – so what? Neutrinos in the Standard Model (SM) are strictly massless \Leftrightarrow neutrino oscillation is BSM physics! ... yes, this is not SUSY, large extra dimensions or anyone's favorite BSM model, but it **IS the only** laboratory-based proof for the incompleteness of the SM. Alas, it is indirect evidence: no energy scale, no symmetry, no new interaction, no new particles are seen in the laboratory. #### Neutrinos in a nutshell $m_{\nu} \lesssim 1 \, \mathrm{eV}$, could be Dirac or Majorana Quarks Neutrinos $$|U_{CKM}| = \begin{pmatrix} 1 & 0.2 & 0.005 \\ 0.2 & 1 & 0.04 \\ 0.005 & 0.04 & 1 \end{pmatrix} |U_{\nu}| = \begin{pmatrix} 0.8 & 0.5 & 0.15 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$ Majorana mass term allows for things like seesaw and could be simple explanation why mixings so different. #### **CP** violation There are only very few parameters in the νSM which can violate CP - CKM phase measured to be $\gamma \simeq 70^\circ$ - θ of the QCD vacuum measured to be $< 10^{-10}$ - Dirac phase of neutrino mixing - Possibly: 2 Majorana phases of neutrinos At the same time we know that the CKM phase is not responsible for the Baryon Asymmetry of the Universe... # Unitarity triangles We currently have no way to directly measure any of sides containing ν_{τ} . #### What did we learn from that? Our expectations where to find BSM physics are driven by models – but we should not confuse the number of models with the likelihood for discovery. - CKM describes all flavor effects - SM baryogenesis difficult - New Physics at a TeV unlikely and a vast number of parameter and model space excluded. #### Non-standard interactions NSI are the workhorse for BSM physics in the neutrino sector. They can be parameterized by terms like this $$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_f \epsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\rho}\nu_{\beta})(\bar{f}\gamma_{\rho}Pf),$$ Wolfenstein, 1978 NB – difficult to build UV-complete models with large effects, e.g Farzan, 2015 Systematic matching to SM EFT also possible, resulting in relationships between the naive ϵ 's. Falkowski, Gonzaléz-Alonso, Tabrizi, 2019 ## Impact on three flavors Three flavor analysis are not safe from these effects! PH, D. Vanegas, 2016 In this example, CP conserving new physics fakes CP violation in oscillation! #### **NSI 2020** 2020 NOvA and T2K data is slight tension CP violating NSI could be the explanation. Gehrlein, Denton, Pestes, 2020 Every time T2HK & DUNE find different values for oscillation parameters the same game will be played and we'll never know if it's real or just systematics. #### **DUNE & NSI** NC NSI modifies matter effects Only one NSI parameter at a time. Kopp for DUNE, 2013 # Neutrino factory & NSI Includes correlation between NSI parameters Generally, one order of magnitude improvement with respect to DUNE/T2HK Improves further with ν_{τ} detection in near detector Antusch *et al.* 2009. Kopp, Ota, Winter, 2008 #### Flavor models Simplest un-model – anarchy Murayama, Naba, DeGouvea $$dU = ds_{12}^2 dc_{13}^4 ds_{23}^2 d\delta_{CP} d\chi_1 d\chi_2$$ predicts flat distribution in δ_{CP} Simplest model – Tri-bimaximal mixing Harrison, Perkins, Scott $$\begin{pmatrix} \sqrt{\frac{1}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$ obviously corrections are needed – predictivity? #### Sum rules NB – smaller error on θ_{12} requires dedicated experiment like JUNO ### Is 5° feasible? # The way forward ## Nuclear effects – example In elastic scattering a certain number of neutrons is made Neutrons will be largely invisible even in a liquid argon TPC \Rightarrow missing energy Ankowski et al., 2015 ## Theory and cross sections Theory is cheap, but multi-nucleon systems and their dynamic response are a hard problem and there is not a huge number of people working on this... Without being anchored by data, any result will be based on assumptions and uncontrolled approximations. Requires a novel precision, high-luminosity neutrino source ⇒ nuSTORM #### LSND and MiniBooNE LSND 1995 MiniBooNE 2018 $$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq 0.003$$ nuSTORM can provide 10σ test. # Gallium anomaly | | GALLEX | | SAGE | | | |---|------------------------|-------------------------|------------------------|----------------------------------|--| | k | G1 | G2 | S 1 | S2 | | | source | ⁵¹ Cr | ⁵¹ Cr | ⁵¹ Cr | ³⁷ Ar | | | $R_{ m B}^k$ | 0.953 ± 0.11 | $0.812^{+0.10}_{-0.11}$ | 0.95 ± 0.12 | $0.791 \pm {}^{+0.084}_{-0.078}$ | | | $egin{aligned} R_{ ext{B}}^k \ R_{ ext{H}}^k \end{aligned}$ | $0.84^{+0.13}_{-0.12}$ | $0.71^{+0.12}_{-0.11}$ | $0.84^{+0.14}_{-0.13}$ | $0.70 \pm {}^{+0.10}_{-0.09}$ | | | radius [m] | 1.9 | | 0.7 | | | | height [m] | 5.0 | | 1.47 | | | | source height [m] | 2.7 | 2.38 | | 0.72 | | 25% deficit of ν_e from radioactive sources at short distances - Effect depends on nuclear matrix element - R is a calibration constant Kostensalo et al. 2019 Nuclear matrix element update, significance decreases from $3.0\,\sigma$ to $2.3\,\sigma$. ## The reactor anomaly Daya Bay, 2014 Mueller *et al.*, 2011, 2012 – where are all the neutrinos gone? For a recent update on neutrino fluxes, see Berryman, PH, 2020 #### **NEOS** and sterile neutrinos NEOS, 2020 Best fit: $\Delta \chi^2 = 11.7$ no oscillation, p-value 0.13 Similar results by DANSS and Neutrino-4 #### $\nu_{\rm e}$ status Global best fit: $\Delta \chi^2 = 9.9$ for no-oscillation $\Delta m^2 = 1.3 \, \text{eV}^2$ $\sin^2 2\theta = 0.02$ This result is flux model-independent! Rate and spectrum consistent. Consistent with Gallium anomaly. NEOS to be updated. ## Disappearance data $$\sin^2 2\theta_{e\mu} = 4|U_{e4}U_{\mu4}|^2$$ with $1 - P_{ee} \propto |U_{e4}|^2$ and $1 - P_{\mu\mu} \propto |U_{\mu4}|^2$ Dentler, et al., 2018 There is (and has been for decades) a strong tension between global appearance and disappearance data. Decaying sterile neutrinos? e.g., 1910.13456, 1911.01427, 1911.01447 ## Steriles and the neutrino factory ν_e disappearance Tiny detectors by modern standards Even then 5 times better reach in $\sin^2 2\theta$ than the next best proposal: isoDAR Bungau *et al.* 2012! Giunti, Laveder, Winter 2009 Full potential in the context of modern ideas like decaying sterile neutrinos has not been studied (yet). # The big question Things the Standard Model does NOT explain - Neutrino mass - Dark matter - Baryon asymmetry - Dark energy - Gravity 50 years of ideas, most have been retired by flavor physics and LHC results Is there anything within our means we can find? NB: None of the neutrino properties & discoveries was anticipated by theory. #### Outlook - Neutrino physics has a lot of room for surprises, so it makes sense to push sensitivities even after DUNE/T2HK. - Persistent hints for new degrees of freedom around 1-10 eV. - A neutrino factory would be a "must fund" if: - the eV-scale anomalies are confirmed, - T2HK and DUNE find different oscillation parameters, - a robust theory of flavor emerges. A neutrino factory has strong synergies with muon collider R&D and could help to motivate the necessary investment.