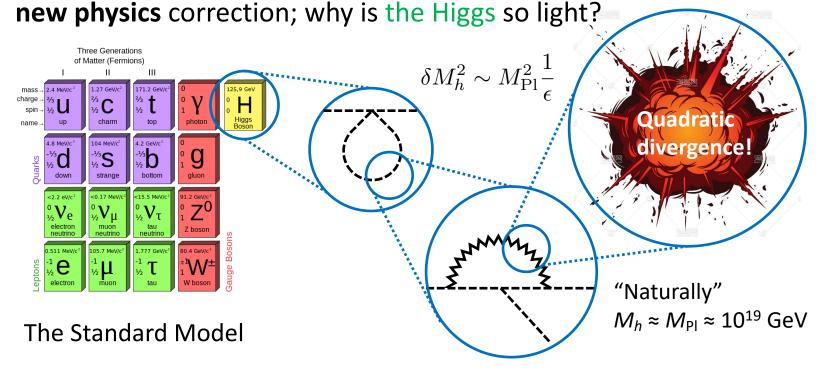
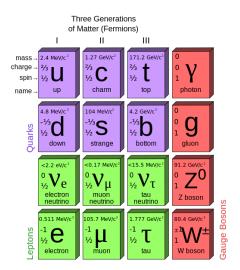


Composite resonances at a multi-TeV muon collider

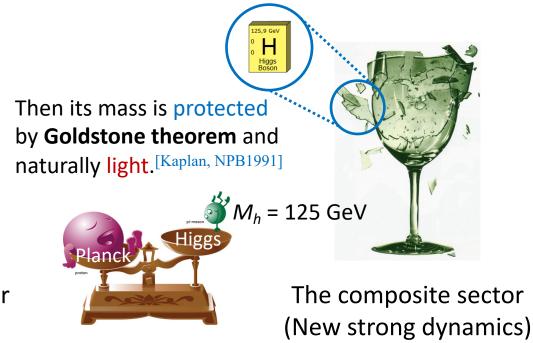

A study for the minimal composite Higgs model

Ke-Pan Xie [Seoul National University, Korea] 2020.12.1 @PITT PACC Workshop: Muon collider physics (remotely)

In collaboration with Da Liu and Lian-Tao Wang, in progress


Solving the hierarchy problem

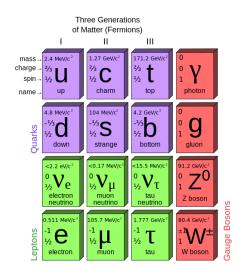
The mass of an elementary scalar is sensitive to the high scale



Solving the hierarchy problem

If the Higgs is a composite Nambu-Goldstone boson (NGB) from spontaneous symmetry breaking of a strong interacting sector...

The elementary sector (SM without Higgs)



The strong dynamics: SO(5)/SO(4) [Agashe et al, NPB2005]

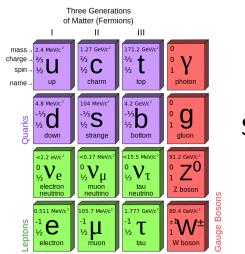
Broken generators: 10 - 6 = 4: NGBs as the Higgs doublet

$$SO(4)$$
 $SO(5)/SO(4)$ $SO(5): \{m{T_L^a, T_R^a, \hat{T}^i}\}$ $SU(2)_{ extsf{L}}$ $SU(2)_{ extsf{R}}$

$$SO(5): \{T_L^a, T_R^a, \hat{T}^i\}$$
 $a: 1,2,3;$ $a: 1,2,3$

The elementary sector (SM without Higgs)

The composite sector (New strong dynamics)


The strong dynamics: SO(5)/SO(4) [Agashe et al, NPB2005]

Broken generators: 10 - 6 = 4: pseudo-NGBs as the Higgs doublet

$$\mathcal{L}_{\text{MCHM}} = \mathcal{L}_{\text{strong}} + \mathcal{L}_{\text{SM}} + \mathcal{J}_{\mu}^{a_L} W_{a_L}^{\mu} + \mathcal{J}_{Y\mu} B^{\mu} + y_L \bar{q}_L \mathcal{O}_R + y_R \bar{u}_R \mathcal{O}_L$$

EW gauge coupling: Subgroup $SU(2)_L \times U(1)_Y$ gauged the incomplete rep. of SO(5)

Partial compositeness: q_L and t_R fill in

Н SO(5)-breaking Interactions Sources of the potential

The elementary sector (SM without Higgs)

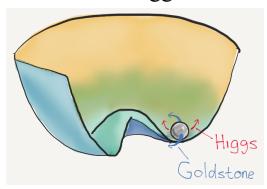
The composite sector (New strong dynamics)

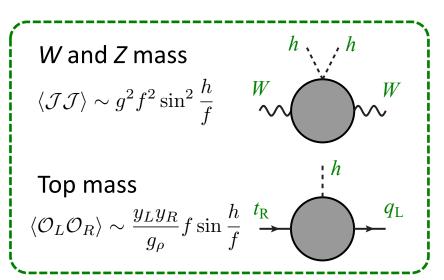
The strong dynamics: SO(5)/SO(4) [Agashe et al, NPB2005]

Broken generators: 10 - 6 = 4: pseudo-NGBs as the Higgs doublet

$$\mathcal{L}_{\text{MCHM}} = \mathcal{L}_{\text{strong}} + \mathcal{L}_{\text{SM}} + \mathcal{J}_{\mu}^{a_L} W_{a_L}^{\mu} + \mathcal{J}_{Y\mu} B^{\mu} + y_L \bar{q}_L \mathcal{O}_R + y_R \bar{u}_R \mathcal{O}_L$$

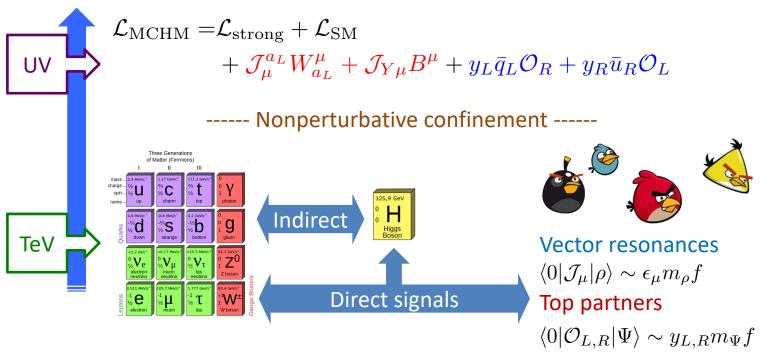
EW gauge coupling:


Partial compositeness: q_L and u_R fill Subgroup $SU(2)_L \times U(1)_Y$ gauged in the incomplete rep. of SO(5)


$$V_{\rm eff}(h) pprox lpha \sin^2 rac{h}{f} - \beta \sin^2 rac{h}{f} \cos^2 rac{h}{f}$$
 EWSB

$$\sin^2\frac{\langle h\rangle}{f} = \frac{\beta - \alpha}{2\beta}$$

Higgs potential generated; EWSB triggered



Phenomenology of the composite Higgs model

The strong dynamics: SO(5)/SO(4) [Agashe et al, NPB2005]

Broken generators: 10 - 6 = 4: pseudo-NGBs as the Higgs doublet

See Andrea Wulzer's talk for the indirect search;

We focus on the direct search.

Resonances mass around 1-10 TeV, might be detected at current or future colliders! This talk: a multi-TeV muon collider

The $\rho^{\pm,0}$ -resonance: (3,1) of SO(4) [same with W^a]:

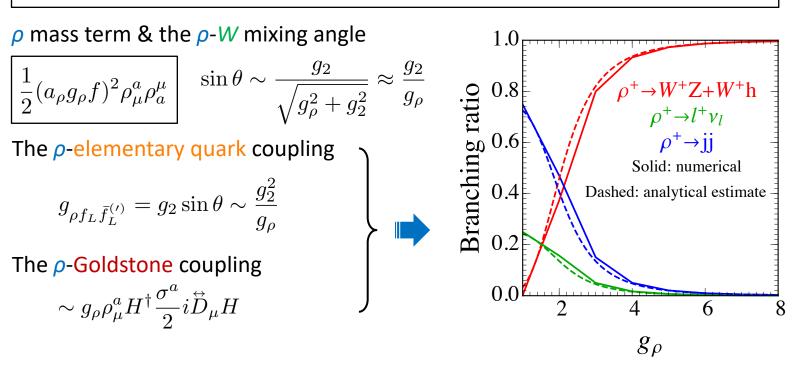
Order 1 parameter
$$\int_{\mu}^{\text{SU(2)}_{L}} \text{gauge coupling}$$

$$\mathcal{J}_{\mu}^{a} W_{a}^{\mu} \rightarrow -a_{\rho}^{2} f^{2} g_{\rho} \rho_{\mu}^{a} \left(g_{2} W_{\mu}^{a} - \frac{i}{f^{2}} H^{\dagger} \frac{\sigma^{a}}{2} \overset{\leftrightarrow}{D}_{\mu} H \right)$$
 SO(5)/SO(4) decay constant
$$\int_{\mu}^{\text{SU(2)}_{L}} \text{gauge coupling}$$

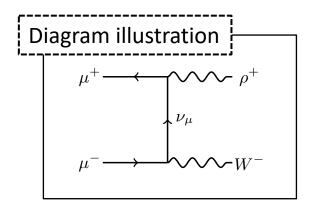
$$\int_{\mu}^{\text{SU(2)}_{L}} \text{gauge coupling}$$

$$\int_{\mu}^{\text{SU(2)}_{L}} \text{Surger of } \frac{i}{g_{\rho}} \overset{\leftrightarrow}{\nabla} \frac{4\pi}{\sqrt{N}}$$

 ρ mass term & the ρ -W mixing angle

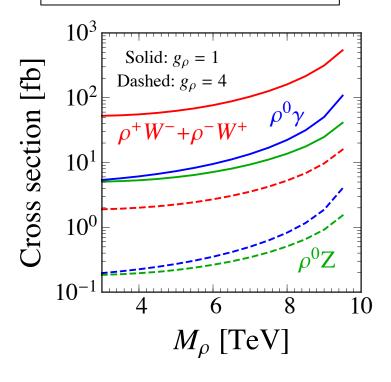

$$\frac{1}{2}(a_{\rho}g_{\rho}f)^2\rho_{\mu}^a\rho_a^{\mu}$$

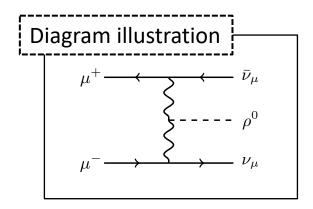
$$\sin \theta \sim \frac{g_2}{\sqrt{g_\rho^2 + g_2^2}} \approx \frac{g_2}{g_\rho}$$


$$g_{\rho f_L \bar{f}_L^{(\prime)}} = g_2 \sin \theta \sim \frac{g_2^2}{g_\rho}$$

The ρ -Goldstone coupling

$$\sim g_{\rho}\rho_{\mu}^{a}H^{\dagger}\frac{\sigma^{a}}{2}i\overleftrightarrow{D}_{\mu}H$$

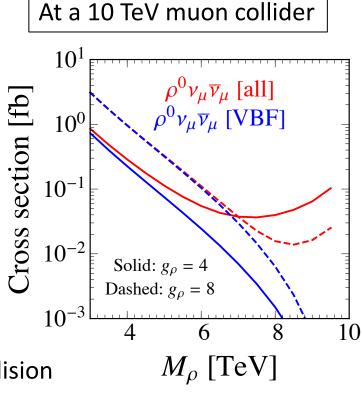

The production of $\rho^{\pm,0}$ at a multi-TeV muon collider: The ρV associated production, with $V=W^{\pm}$, Z, γ .


Features:

- The ρW channel always dominates;
- 2. Rate proportional to g_{ρ}^{-2} ;
- 3. Rate increases when M_{ρ} is close to the collision energy: the t-channel light fermion on-shell

At a 10 TeV muon collider

The production of $\rho^{\pm,0}$ at a multi-TeV muon collider: The vector boson fusion (VBF).

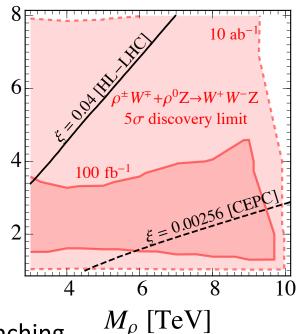


Features:

1. The ρV channel "pollutes" VBF, and it's hard to separate:

$$\mu^+\mu^- \to \rho^0 Z \to \rho^0 \nu_\mu \bar{\nu}_\mu$$

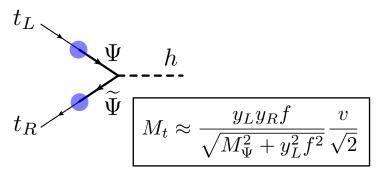
2. For large g_{ρ} , VBF dominates, however for M_{ρ} close to the collision energy, ρV always dominates.


Estimating the reach in the $\rho W + \rho Z => W^+W^-Z$ channel Setup:

- 1. The $V = W^{\pm}$ and Z in the final state not decay;
- 2. Require $p_T(V) > 500$ GeV and treat V as a fat-jet [tagging efficiency 60% and mis-tag rate 5%];
- 3. Require 3 fat-jet, and the combination of any 2 of them within the mass ω window $[M_{\rho} \pm \Gamma_{\rho}]$.

Results:

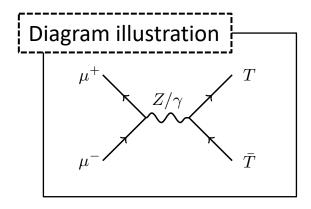
- 1. The large g_{ρ} region suffers from the low production rate;
- 2. The small g_{ρ} region suffers from low branching ratio to $W^{\pm}Z$ or $W^{+}W^{-}$;
- 3. $(\xi = v^2/f^2 \text{ constrained by EW measurements})$



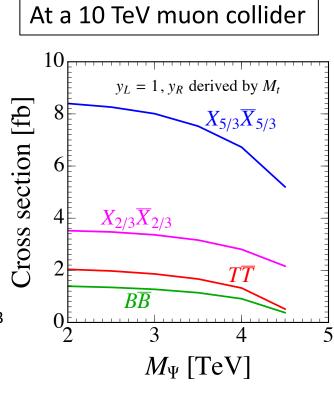
The Ψ -resonance: $(2,2)_{2/3}$ of SO(4) x U(1)_X

Decomposed to 2 vector-like-quark doublets Q_x and Q under $SU(2)_L \times U(1)_Y$

$$egin{aligned} (\mathbf{2},\mathbf{2}) &
ightarrow \mathbf{2}_{7/6} \oplus \mathbf{2}_{1/6} \ \Psi_{(\mathbf{2},\mathbf{2})} &
ightarrow egin{pmatrix} X_{5/3} \ X_{2/3} \end{pmatrix} \oplus egin{pmatrix} T \ B \end{pmatrix} \end{aligned}$$

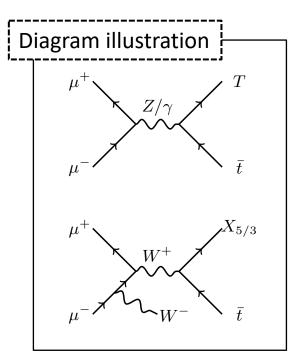

SM 3rd-generation quarks in 5 of SO(5)

Goldstone equivalence theorem:

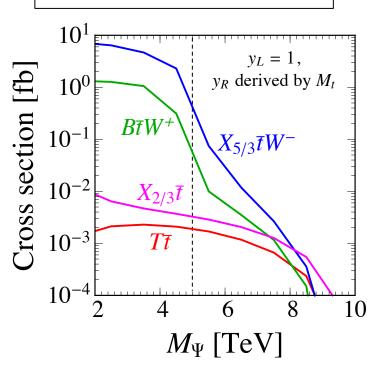

$$Br(T \to tZ) \approx Br(T \to th) \approx 50\%$$

 $Br(X_{2/3} \to tZ) \approx Br(X_{2/3} \to th) \approx 50\%$
 $Br(B \to tW^-) \approx 100\%$
 $Br(X_{5/3} \to tW^+) = 100\%$

The production of top partners at a multi-TeV muon collider: The pair production: Drell-Yan process

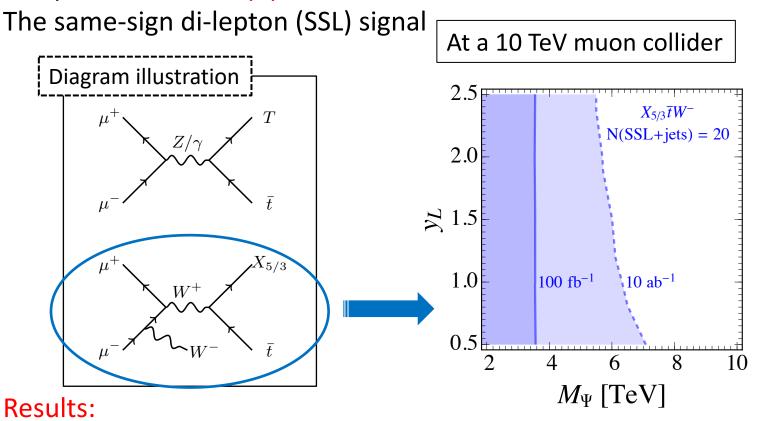

Features:

- 1. The charge 5/3 top partner has the largest rate;
- 2. Partly due to the lightness of $X_{5/3}$ because it doesn't mix with SM particles. Other top partners are heavier.



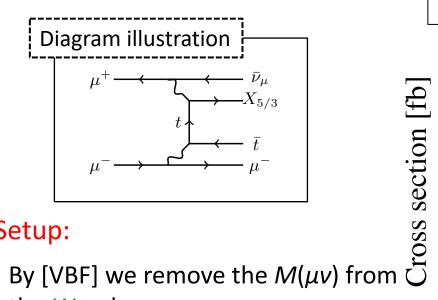
The production of top partners at a multi-TeV muon collider:

The "DY-like" single production



Features:

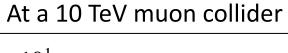
- 1. The charge 5/3 top partner again acquires the largest rate;
- 2. For M_{ψ} < 5 TeV the $X_{5/3}tW$ channel receives pair production contribution.

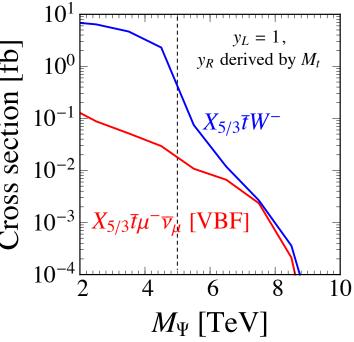

The production of top partners at a multi-TeV muon collider:

- 1. The contours for N(SSL+jets) = 20 as an estimate for the muon collider reach;
- 2. For M_{ψ} < 5 TeV the pair contribution dominates.

The production of top partners at a multi-TeV muon collider:

The VBF single production




Setup:

the W-pole.

Features:

For large M_{ψ} it is comparable with the Dell-Yan-like process.

Summary & discussions

The phenomenology of the minimal composite Higgs model at a multi-TeV muon collider is investigated.

- 1. The vector resonances: ρV associated production or VBF, and the former usually dominates;
- 2. The top partners: <u>Drell-Yan pair produced</u> or <u>single</u> (DY-like or VBF), and the $X_{5/3}$ channel always dominates;

Future directions (in progress):

- 1. The di-lepton decay channel of ρ ;
- 2. Interplay between ρ and top partners;
- 3. The results at a 30 TeV muon collider;
- 4. ...

Summary & discussions

The phenomenology of the minimal composite Higgs model at a multi-TeV muon collider is investigated.

- 1. The vector resonances: <u>pV</u> associated production or <u>VBF</u>, and the former usually dominates;
- 2. The top partners: <u>Drell-Yan pair produced</u> or <u>single</u> (DY-like or VBF), and the $X_{5/3}$ channel always dominates;

Future directions (in progress):

- 1. The di-lepton decay channel of ρ ;
- 2. Interplay between ρ and top partners;
- 3. The results at a 30 TeV muon collider;
- 4. ...

Looking forward to a muon collider!

