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It is there.

Only seen its gravitational interaction.
We have to understand them better.
Collider search is a key approach.
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> We get the right relic abundance of dark matter.
— Thermal equilibrium: model independence.

— Major hint for weak(+) scale new physics!
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— If the cross section too small, e.g. Mpm too large, too much dark
matter.

> Need some contrived mechanism to get rid of DM.
— If the cross section too large, e.g. Mpm too small, not enough DM.

» Can have non-thermal production. Not ideal, but can be
plausible.



DM part of a EW multiplet

q Xi q X 5 Xo

q X0 q X", Xo
— Simplicity: there is no additional new mediator.
» Mediated by W/Z/h.

— In SUSY, there are two such examples

> Higgsino: doublet. Wino: triplet.



DM part of a EW multiplet

"Minimal dark matter”, Cirelli, Fornengo and Strumia, hep-ph/0512090, 0903.338l

DM € (1, n,Y) of SUB).x SU2); X U(1)y

— Consider first the fermionic mulitplets.

? Only couplings at the renormalizable level are the
gauge interactions.

» The only free parameter at this level is the mass, m,.

> Very predictive.



DM part of a EW multiplet

"Minimal dark matter”, Cirelli, Fornengo and Strumia, hep-ph/0512090, 0903.338l

DM € (1, n,Y) of SUB).x SU2); X U(1)y

— n odd. Fermionic.

P

P

P

n>7, Landau pole close to Mpm .
After EWSB, mass splitting (minimally) generated at 1-loop.

Choose Y=0. Lightest member electric neutral. Potential DM
candidate.

n > 5, can have operators which decays the DM. Can be
avoided if additional symmetry are imposed (or introduce a
tiny hypercharge.)



DM part of a EW multiplet

"Minimal dark matter”, Cirelli, Fornengo and Strumia, hep-ph/0512090, 0903.338l

DM € (1, n,Y) of SUB).x SU2); X U(1)y

- n even. Fermionic

P

P

Choose Y=(n-1)/2 ensures lightest member is neutral.

Direct detection rules out the minimal case due to tree
level Z exchange.

Can be avoided to introduce a small splitting (8m > 102 keV

) of the neutral states (for example, from a dim-6
operator). Not quite minimal, but still viable.

Famous example: Higgsino (1,2)i/2



DM part of a EW multiplet

"Minimal dark matter”, Cirelli, Fornengo and Strumia, hep-ph/0512090, 0903.338l

DM € (1, n,Y) of SUB).x SUQ2), x U(1)y

— Scalar (real and complex)
> In principle intferesting as well.

» Minimal mass splitting, stability discussion parallel to
that of the fermionic multiplefts.

> Addition couplings of the form H'H X" X. More
parameters involved in a full analysis.

— As a first step, we will focus on fermionic
candidates here.



Thermal targets

Model Therm. B
(color,n,Y) target -
(1,2,1/2) Dirac 1.1 TeV .|
(1,3,0) | Majorana | 2.8 TeV g mof
(1,3,¢) Dirac | 2.0 TeV
(1,5,0) | Majorana | 14 TeV T TR
(1,5,€) Dirac 6.6 TeV DM mass in TeV
(1,7,0) | Majorana | 23 TeV — 40 Tey?  Mitridate, Redi, Smirnoy, Strumia, 1702.01141
(1,7,¢€) Dirac 16 TeV

2 Majorana Eptuplet
402t
— Perturbative

Reach up to thermal target -

L4

—— Bound States

Qpah?

0.10

complete coverage for WIMP candidate

0.05F

Bottaro, 2nd muon collider physics potential meeting



Direct detection

Prospect for heavy WIMP Searches

Hill and Solon, 1309.4902
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Indirect detection (di-photon ...)

Cobhen, Lisanti, Pierce, Slatyer, 1307.4082 Cirelli, Hambye, Panci, Sala and Taoso, 1507.05519
Fan, Reece, 1307.4400

NFW profile, conservative bound
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Still, important to search/study such particles at a collider:



Two classes of signals at colliders

— Production of dark matter particle.

2 Inclusive search for X+MET

[0 e.g. mono-jet at hadron colliders.

— Small EW induced mass splitting, charged
member long-lived

> Disappearing track



Search at future colliders
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100 TeV pp collider is needed
to cover the EW doublet (Higgsino) and triplet (wino) DM.

Not enough to cover the higher dim multiplets.



At muon colliders

Naive expectation: reach dark matter mass m, = 1/2 Ecm

Our result: almost. But not so easy.



Inclusive missing mass searches

General cuts.

Angular acceptance:

10° < 0, < 170°

Due to shielding. Better forward coverage can be beneficial. More later.

Missing mass:

1/0 - do/dmuys [1/0.4 TeV]

2

Mmissing = p/ﬂ‘ + Pu-

101-|_|_|'” L

(1,7,€)

mono-photon

m, = 3 TeV

background

25 5.0

75

100 125

mmissing [TGV]

E : b 2 2
po i mmissing > 4m){

Useful for background suppression,
especially for large dark matter mass



Mono-photon channel
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Dominated by the production of charged members of the multiplet.

Consider the delayed decay and the decay products from, e.qg.,

X+ = o+ soft particles

as invisible here. (More on this later)



Mono-photon channel

Drell-Yan VBF
Signal:
NW
«—Dle <
pr p
Backqround:
9 %%
o Yu




Mono-photon rates
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Mono-photon rates

Drell-Yan like process dominate for large m,
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Mono-photon rates

Drell-Yan like process dominate for large m,

Higher rate for higher multiplets: larger
coupling (charge), higher multiplicity of final
states.
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Mono-photon rates

Drell-Yan like process dominate for large m,

Higher rate for higher multiplets: larger
coupling (charge), higher multiplicity of final
states.

FSR photon enhanced for higher multiplets.
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Mono-photon rates

== Y = XX
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Drell-Yan like process dominate for large m,

Higher rate for higher multiplets: larger
coupling (charge), higher multiplicity of final
states.

FSR photon enhanced for higher multiplets.

VBF like processes falls off like m,-4 Useful
for m, « Ecm .




Mono-photon rates

Drell-Yan like process dominate for large m,

Higher rate for higher multiplets: larger
coupling (charge), higher multiplicity of final
states.

FSR photon enhanced for higher multiplets.

VBF like processes falls off like m,-4 Useful
for m, « Ecm .
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Effective photon approximation.




Signal significance
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Signal significance is dominated by the systematics.
Good reach if one can control the systematics to the level of 10-3



Mono-muon

Signal:

Background:

,UJ_ fY? Z = /7/7 Z

A signal unique to muon collider
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Some Kinematics

T T v

NNV N\ ——— !
— total background v XOH
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do /dE, |b/0.2 TeV]|

B+ >0.71, 1.4, 2.3, 3.2, 6.9, 22.6 TeV, for /s = 3, 6, 10, 14, 30, 100 TeV



Some Kinematics

do/cosb,- |tb/0.1]

- — total background

3L
10; - uy = v

10° < 6,- <90°, 90° <0,+ <170°



Signal significance
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VBF-like signal. Falls off like m,* .

S is comparable to B. Less susceptible to systematics



VBF

Signal: Background:

Imposing selection cuts:

Myt > 300 GoV,  Miigsing = (P + pl — pOlt — p2u)2 > 4m?.



Signal significance

Need to tag two forward muons (angular acceptance).

Only neutral channel contribute.

10—3.
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Lower signal significance comparing tfo mono-muon



Benefits of better angular coverage

u* Tag this muon, suppress mono-muon bkgd.

— /‘@ Easier to catch this. Enhance signal rate.
H 71l =

7

X
X

Y
7, =

e s ]
i

Effect scales like: 1/pi” o« 1/63,



Disappearing track

%1~ decaying into X:"+n*

Badly mismeasured in p, due to a wrong
combination of space-points

High-p, charged hadron
interacting with ID material

Lepton failing to satisfy
identification criteria due to
large bremsstrahlung or scattering

reconstructed track
true particle track

!
!
!
i
!
!
J

|

Pixel SCT TRT

Figure from ATLAS disappearing track search twiki

Signal of a sufficiently long-lived charge particle



More distinct but harder

— A distinct signal, no “physics” background.

— However, no hard objects. BIB important.

> A lot of background hits, also a lot of handles
(timing, direction, etc. )

> Dedicated sfudy ON-gOing- talk by F. Meloni at muon collider coll. meeting.

— Here, basic feature of the signal.

> Setting targets.


https://indico.cern.ch/event/974728/contributions/4104600/attachments/2144770/3614818/DistracksMuCollPPM.pdf

Amgo (MeV)

Small mass splitting, long lifetime
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Charge #1 states tends to have macroscopic lifetime.

More challenging for higher (n=odd) mutiplet, and doublet.



Disappearing frack
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%1~ decaying into X;"+n*

Badly mismeasured in p, due to a wrong
combination of space-points

High-p, charged hadron
interacting with ID material

Lepton failing to satisfy
identification criteria due to
large bremsstrahlung or scattering

true particle track
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Signal acceptance

%1~ decaying into X;"+7*

Badly mismeasured in p, due to a wrong
combination of space-points

High-p charged hadron
interacting with ID material

Lepton failing to satisfy
identification criteria due to
large bremsstrahlung or scattering

reconstructed track |

true particle track )

Pixel SCT TRT

To reconstruct a disappearing track: 2-3 hits needed.

Focusing on the barrel region, endcap further away.

™ =5 cm with |n,| < 1.5




Signal rate

14 TeV
! enchmarkdr>5cm__ Single Disappearing Track |
: lection: | [n|<1.5 j
0.8 1\ ~_ | = Disappearing Track Pair
f Wino-like 6.5 TeV
E;‘ 0.6 Wino-like 3 TeV
.% f Higgsino-like 1 TeV
£ 0.4
0.2
0.0 Dl e ———— T

Minimal Transverse Displacement d7"(cm)

"survival” probability:

ey (cos 0, y, dP™) = exp (

. dmin

T

Bryct )

Boost matters

Higgsino has shorter lifetime

Br = /1 —1/+%sinf



Angular distribution of the signal

I, < 1.5
Drell-Yan type processes

\ 4

my=1TeV, 3 eV, 6.5 TeV

D 050 ~~~~~~~~~~~
5 K T
o W . TTme-IITTTTTeeeTT
O _____________________________________
°
o .
§o) — Inclusive (before cut)
IS . .
S B @@ Wino-like (after cut) i, > 5 cm
=

o.10m | ...

0.05

’10 -05 00 05 1.0



Efficiency

Signal effciencies
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Apply disappearing track to Drell-Yan mono-photon signal

Double disp-track signal has lower rate, but better for BIB

As a target/benchmark, use

20(50) signal events for 2(5)o reach.




Reach by channel

Muon Collider 20 Reach
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Reach by channel
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Mono-muon channel, high S/B. Strong for m, < Ecm .

Good reach for lower dim (n<3) multiplets.
Di-muon can be useful for higher multiplets.



R eac h by C h ann el Luminosity benchmark:

(1,7,€)
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Mono-muon channel, high S/B. Strong for m, < Ecm .

Good reach for lower dim (n<3) multiplets.
Di-muon can be useful for higher multiplets.

Mono-photon channel, low S/B, systematics dominated.
Not yet reach m, = 1/2 Ecwm.

Stronger reach for higher dim (n25) multiplets, coupling
enhancement, higher multiplicity.



R eac h by C h ann el Luminosity benchmark:

Muon Collider 20 Reach
(Vs=3 30, 100 TeV)

(1,5,€)

(1,5,0)

(1,3,€)

(1,3,0)

(12,3)
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<= (1OTeV

Mono-muon channel, high S/B. Strong for m, < Ecm .

Good reach for lower dim (n<3) multiplets.
Di-muon can be useful for higher multiplets.

Mono-photon channel, low S/B, systematics dominated.
Not yet reach m, = 1/2 Ecwm.

Stronger reach for higher dim (n25) multiplets, coupling
enhancement, higher multiplicity.

Disappearing track. Great potential! However, reach will
depend on BIB level. Not quite reach the m, = 1/2 Ecm

(close for the triplet), since some boost still needed
(particularly for n25)



Summary: the reach

Muon Collider 20 Reach («/’ 3, 30, 100 TeV)

(1,7,€)
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(1,5,0)

(1,3,¢€)

III]I

-like

|
(1,3,0) — §

1 50
mX(TeV)
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With inclusive signal: Ecm = 14 TeV enough to cover n<3 multiplets.

Higher energy needed to cover higher multiplets.

With disappearing track: potential to reach almost m, = 1/2 Ecm



5c discovery reach
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Luminosity and energy: trade off

Inclusive Bsearches:
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Thermal targets
107

Required luminosity at 95% C.L. [ab™!]

—_
o
[e=)
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Vs )2 x 10> cm 257! (b)

Some examples

doublet: 5 ab-! at 10 TeV

Dirac triplet: 6 ab-! at 10 TeV or 2 ab-! at 15 TeV
Majorana 5-plet: 300 ab-! at 60 TeV or 3 ab-! at 100 TeV



Luminosity and energy: trade off

1007

Required luminosity for 20 Events [ab!]

Disappearing track searches

Thermal targets

Some examples

Required luminosity for 50 Events [ab™]

2

' Thermaltargets

10! 102

Vs [TeV]

doublet: 10 ab-! at 10 TeV or 3 ab-! at 20 TeV
Dirac triplet: < 0.1 ab-! at 6 TeV
100 ab-! at 30 TeV or 1 ab-! at 100 TeV
Dirac 7-plet: 100 ab-! at 40 TeV or 10 ab-! at 50 TeV

Majorana 5-plet:



Additional scenarios

= Coannihilation.

Scalar color triplet (stop/bino) stau coannhi lati on

30+

[\
W

[\
S

DM mass splitting in GeV
S o

5 ]
00 05 1.0 1.5 2.0 0 1000 2000 3000 4000 5000
: my(GeV)
DM mass in TeV

De Simone, Giudice, Strumia, 2014

Larger mass splitting, no disappearing track.

Expect to be covered by the inclusive missing mass searches.



Additional scenarios

— Simplified models. (Actually more complicated.)

direct detection —

X\)\I/y/x X X
I ¢
¢ — Ty q q

s — channel t — channel

collider detection —
<— UO01129)3P 3I2IIPUI

Introducing new mediators between DM and SM.

Muon collider sensitive to mediators which couples to muons.



Search for mediators
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Typically, direct search for mediators more sensitive.

Expected to be similar at muon collider



Conclusion

Muon Collider 20 Reach (J__ 30, 100 TeV)
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High energy muon collider can play
a decisive role in probing WIMP dark matter!



Muon collider scenarios

D. Schulte, Snowmass AF+EF joint meeting

Muon Collider Parameters  From the MAP collaboration:
Higgs Proton source ]
Accounts for N
Production Site Radiation

Parameter Units Operation Mitigation
CoM Energy TeV 0.126 s 3.0 6.0
Avg. Luminosity 10*'cm™s™ 0.008 1.25 4.4 12
Beam Energy Spread % 0.004 0.1 0.1 0.1
Higgs Production/10sec 13,500( 37,500| 200,000 820,000

Parameter | Unit  [JEER CVANNEE R ARS8
L 10%** cm%s™ 1.8 20 40

Higher energies, 30 TeV and even higher, have also been mentioned.

Luminosity benchmark: ¥

2
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Marching forward
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