Patrick Janot

EPH

Outline

♦ First Lecture :

ACADEMY AWARDS"

BEST ACTOR · Roberto Benigni

OVER 90 TOP CRITICS AGREE: "ONE OF THE YEAR'S BEST!"

 $* \star \star \star \star !"$

"A MODERN MASTERPIECE!"

An unforgettable fable that proves love, family and imagination conquer all.

Particle Flow Event Reconstruction 5-Feb-2011

Internezzo :

Exercises...

Particle-Flow Event Reconstruction from LEP to LHC

◆ Introduction : Basics of Particle-Flow Event Reconstruction

Basics of Particle-Flow Event Reconstruction ()

- What is Particle-Flow Event Reconstruction ?
 - + A better name could actually be

"PARTICLE FOLLOW RECONSTRUCTION"

 Made easier by a smart detector design, carefully thought ahead of time • To be able to follow individually each particle arising from a collision ⇒ In their journey through the various sub-detectors • To be able to identify each particle \rightarrow with their characteristic interaction in the various sub-detectors • To be able to measure the origin, direction, energy, charge of each particle → with an optimal combination of the measurements of all sub-detectors → with a decent accuracy (See later for the definition of "decent") • Towards a global event description with a complete list of particles \Rightarrow As if it came directly from a Monte Carlo event generator

Basics of Particle-Flow Event Reconstruction (2)

what particles are to be followed ?

- + Ideally : build a detector to follow all the standard model (SM) particles
 - By definition, any exotic particle decays to SM particles (+ dark matter)

Not quite ...
 Only e, γ, ν stable, and μ → eν_eν_μ but βγcτ ~ 6 Km/GeV, quasi stable
 → Quarks and gluons hadronize to give jets of hadrons, τ, w, Z decay to leptons and quarks, and H decay to pairs of every other particles

5-Feb-2011

Basics of Particle-Flow Event Reconstruction (3)

- why bother with individual particle reconstruction ?
 - + It's seemingly complicated (combination, optimization, ...)
 - People usually like simple criteria for identification, reconstruction, ...
 - + It requires an excellent Knowledge of all sub-detectors of an experiment
 - People usually have the Knowledge of the sub-detector they built
 - It requires to think ahead of time of the detector design, and of the interplay between sub-detectors
 - People usually optimize the design of "their" sub-detector, with at best one primary goal in mind
 ⇒ e.g., b tagging for vertex detector, tracks for tracker, isolated photons and isolated electrons for ECAL, jets for HCAL, ...
 But with multiple technical/practical/financial constraints

 \Rightarrow which often take the precedence on the primary goal

Basics of Particle-Flow Event Reconstruction (3)

why bother with individual particle reconstruction ?

Basics of Particle-Flow Event Reconstruction (4)

- □ So, indeed ... why bother ?
 - Philosophical answer
 - A list of particles is the closest one can get from the actual collision
 → Giving a complete and fully consistent view of the event
 → Making reconstructed events very similar to generated events
 → Greatly simplifies the analysis design process, for any final state
 - Practical answer
 - Each sub-detector response depends on the particle type. After identification of a particle, their combination
 - → Returns the best energy, direction, (mass) determination for each type
 → Gives in turn the optimal response for jets, photons and leptons
 → Is expected to improve the performance of any data analysis
 - + Financial answer: detector are expensive, thus make optimal use of them !
 - Question : is the improvement with respect to easier approaches worth it ?

Tracking, hermetic EM and HAD calorimetry, muon chambers, large axial B field
So, what is so special about the design of this detector ?

Tracking, hermetic EM and HAD calorimetry, muon chambers, large axial B field
So, what is so special about the design of this detector ?

A tracker thought for Particle Flow ()

- ALEPH choice : a Time Projection Chamber
 - Large volume mostly empty (filled with gas) • 1/0 X0, non destructive
 - ♦ 21 three-dimensional measurements up to R=1.80m
 - No track-to-track ambiguity
 - 100% tracking efficiency, even in jets → Even if originating far from main IP • $\sigma(1/p_T) = 6.10^{-4} \text{ GeV}^{-1}$, no charge flip
 - \Rightarrow Almost perfect in the LEP p_T range
- B Field 1.51 No fake track, hence no fake energy reconstructed \rightarrow All hits are displayed in this figure !
 - Event charged-particle energy reconstructed perfectly • Origin, energy, direction, charge, but yet no ID.
 - \rightarrow (some e/ π separation below 5 GeV, dE/dx)

A tracker thought for Particle Flow (2)

- Is that perfection enough ?
 - ♦ Not really ...
 (T
 - In a hadronic Z decay, charged particles carry 65% of the total energy
 → with a broad distribution (from 0 to 100%)
 - Back to almost 100% if neutral particles are identified perfectly

A calorimetry thought for Particle Flow ? ()

ECM =

 \square Remember our famous ete- \rightarrow WW event

- ♦ Neutrals as energy deposits in the calorimeters MALEPH^{DALE} • 25% are photons (mostly from π° decay) → Detected in ECAL • 10% are neutral hadrons (K°), n, n, ...) → Detected in ECAL and HCAL -• But 65% are charged particles → Electrons in ECAL, Muons in HCAL → Charged hadrons in ECAL and HCAL weapons to identify what is what ◆ Large B field + large tracking volume • separate charged from neutrals, and charged from charged
 - ◆ Calorimetry fine (3D) segmentation + small Moliere radius ("isolate" all deposits)
 - ♦ No/little material in front of calorimetry (one particle = one deposit)

A calorimetry thought for Particle Flow ? (2)

why not using calorimeters only ?

- Worse energy resolution for charged hadrons (100%/VE vs perfect) and Worse direction determination for charged hadrons (magnetic field)
 - Affects 65% of the event energy in hadronic final states
- Muons are just minimum ionizing particles
 - Energy information is lost, so need anyway to use tracking
- ECAL response for charged/neutral hadrons is smaller than for photons/electrons
 A large fraction of the energy is not underestimated
- Low momentum charged particles do not reach calorimeters
 - Their energy is lost
- No particle list
- + For Z hadronic decays
 - Reconstruct 72 ± 10 GeV
 - Need a posteriori corrections

Particle Flow Event Reconst 5-Feb-2011

An EM calorimetry thought for Particle Flow ()

- The ECAL, for electrons and photons
 - ◆ 36 modules (12 in barrel and 12/end-cap)
 - ◆ For each module:
 R_M = 1.5 cm
 - 45 planes of lead / wire chamber
 - Total thickness 22 Xo
 - Transverse segmentation of 3x3 cm
 - Longitudinal segmentation 4/9/9 Xo
 - 75000 x 3 cathode readout "towers"
 - Each of the 45 wire planes is readout too
 - Main characteristics
 - Hermeticity
 - 3D fine granularity
 - Redundancy
 - Simplicity

15

Particle Flow Event Reconstruction 5-Feb-2011

An EM calorimetry thought for Particle Flow (3)

- \square EM energy deposits (γ , e[±]) are reconstructed as follows
 - * Seed with a cell in stack 2 with $E_2>30$ MeV, and larger than its 8 neighbours
 - Correlate with a cell in stack 1 and/or in stack 3 with $E_{1,3}>15$ MeV
 - ◆ Estimate the energy from the four central towers Ey (and divide by 0.85)
 - ◆ Call it photon if the closest track extrapolation is > 2cm away from barycentre
 - \bullet otherwise, test E₄/p, $\Sigma E_1 x_1/E_4$, dE/dx against the electron hypothesis
 - and call it either electron or charged hadron

Particle Flow Event Reconstruction 5-Feb-2011

An EM calorimetry thought for Particle Flow (4) Efficiency for photons (E>250MeV) in jets and tau decays > 95% And 100% in isolation

Particle Flow Event Reconstruction 5-Feb-2011

A HAD calorimetry thought for Particle Flow ? ()

The HCAL for charged/neutral hadrons, ... and muons

- ♦ 36 modules (24 in barrel, 6/end-cap)
- + Placed behind the magnet coil
 - Hadrons lose some energy in the coil
- For each module
 - 23 planes of 5cm iron / drift streamer tubes
 - Total thickness 1.2 λ_0 's
 - Cathode readout, transverse size 15cm x 15cm
 → But no longitudinal segmentation
 - Digital individual drift tube readout (Yes/No)
 → But only 2D granularity

- Seems not particularly optimal for hadron/hadron separation
 we'll see that in a couple slides
- what about muons ?

A HAD calorimetry thought for Particle Flow ? (2)

Does it work as initially designed for ? (3)

But very much so for the quark angular resolution

- Performance on hadronic Z decays (cont'd)
 - Jet angular resolutions (with respect to parton) of about 18 mrad
 → Would have been 13 mrad with an ideal detector
 - \rightarrow Was 64 mrad with tracks only, and 100 mrad with calos only
 - Made a breakthrough in b-tagging efficiency, in particular
 - → By a better determination of track impact parameter wrt the jet axis

Particle Flow Event Reconstruction 5-Feb-2011

We already went through a lot here

Leptons

S THIS ALL THAT EXISTS

- Electrons
- Muons
- Photons
- Tqus
- Quark and gluons (jets)

Particle Flow Event Reconstruction 5-Feb-2011

• First event not detectable (no trigger), but neutrinos in the other two are ! • From energy-momentum conservation: $p_{\nu} = -\sum_{\text{particles}} p_i$ and $E_{\nu} = \sqrt{s} - \sum_{\text{particles}} E_i$

→ Hence the importance of measuring well the energy/direction of all particles in the event. Particle-Flow reconstruction is the tool for V's
 → The same statement holds true for

Does it work as initially designed for ? (8)

□ Particle-Flow calibration with qq̄γ events Events per GeV/c² 00 00 300 ALEPH Monte Carlo Determine the hadronic mass Data (a) Gaussian fit • with particle flow: mhad (measured) $Peak = -350 \text{ MeV/c}^2$ • As recoiling to the photon: mhad (recoil) • Plot the difference ΔM 100 • Compatible with O, establishes calibration -15 -5 5 15 -25 $\Delta M (GeV/c^2)$ ♦ Determine the mass resolution • As a function of E_{γ} (i.e., of m_{had}) ion (GeV/c²) ALEPH $\rightarrow E_{\gamma} = 0$ means $Z \rightarrow q\bar{q}$ (b) 45 Resol · Result 4 $\rightarrow \sigma(m) = 59 / m \text{ or } \sigma(E) = 59 / E$ $\sigma_{\rm F} = 0.59\sqrt{\rm E} + 0.6 \, {\rm GeV}$ $x^2 = 6.6$ for 6 d.o.f → To be compared to 33% ideally 2 Resolution on My Resolution on MREC

0 0

20

40

60

80

Invariant mass (GeV/c^2)

100

25

Is it ready for physics analysis? ()

- Core resolution vs tails : The devil is in the details
 - + Particle-Flow reconstruction is a beautiful intellectual construction
 - with a superior core resolution and larger efficiencies for almost everything
 → Jet energy and direction, jet-jet invariant mass, missing energy, b tagging, tau selection, etc...

→ which a priori helps to separate different processes

- But it might be subject to more reconstruction failures than simpler methods
 - Because it uses all sub-detectors of the experiments and needs a refined algorithm to put all pieces together
 - \Rightarrow Again, the (apparent) simplicity of the detector design is essential here.

The simpler the detector, the simpler the algorithm ...

- Pure tracking methods are not sensitive to calorimeter noise
- Pure calorimetric methods are not sensitive to track-cluster link efficiency
- Tails may therefore develop in various distributions (e.g., jet energy or direction)
 Which may become a showstopper when looking for rare events

Is it ready for physics analysis ? (2)

Strategy, in the simulation and in the data (the best MC is the data)
D study events in the far tails, with a specific physics analysis
2) fix the problem (if any - after all, in the data, it might be New Physics!)
3) Go to D until no obvious problem remain

More specifically, look here

... and here

◆ Iterative process that improves the reliability, and ultimately the core resolution

Particle Flow Event Reconstruction 5-Feb-2011

Is it ready for physics analysis? (3) Example : calorimeter noise (electronics, sparks, radioactive decays) Typically creates high energy tails, fake particles in the list

- Easily identified thanks to the redundancy of the calorimeter measurements
 → Pads vs wires in ECAL, towers vs drift tubes in HCAL
- Noise cleaning requires compatibility between the measurements
 Check effectiveness of the criterion on randomly triggered events
 - and on Z hadronic decays (large tail must disappear)
 - \rightarrow Check over-cleaning in the HVV search (in MC, or in the first data)
- Repeat the exercise with HVV candidates
 - Track-cluster link failure
 - + Particle identification failure
 - + PF Algorithm bugs
 - Unforeseen configurations
 - with stubbornness and pragmatism

Is it ready for physics analysis ? (4)

- First analysis done in ALEPH with particle flow : $HVV\overline{}$ search

- + Two acoplanar jets, accompanied with missing energy (from the neutrinos)
 - LEP started in July 1989, delivered 2.5K Z in 1989
 → Used to develop and "tune" the algorithm
 - Particle-Flow algorithm written between January and April 1990
 - Algorithm and analysis first presented in May 1990, with 100K Z
 - Outperformed other analyses in ALEPH (tracks only) by a factor 2
 - Took the leadership in Higgs boson search until the end of LEP
- At that point, particle-flow reconstruction
 - + Became the standard way of doing physics analysis in ALEPH
 - For precision measurements
 - For searches for Higgs boson and new particles
 - Almost 400 publications that use PF reconstruction

Lessons learned [?] ()

 Particle Flow is potentially a very powerful event reconstruction with possibly benefits in any physics analysis, if several conditions are met The detector better be designed with particle flow in mind • Overall simplicity of the design (over the full 4π solid angle) • Combination of all sub-detector information in PF algorithm ♦ 3D granularity for all sub-detectors • ALL : Tracker, calorimeters, muon detectors, towards efficiency and purity • Good energy resolution is a bonus, but not crucial. Granularity comes first. ◆ Large magnetic field (and large tracking volume) • To measure charged particle momenta and separate their energy deposits ♦ Little material in front of the calorimeters • Must think of tracker, coil, services, ... Redundancy of the measurements • To fight against fake, noise, ...

Lessons learned [?] (2)

- The algorithm development is also guite demanding
 - + It requires an excellent Knowledge of all sub-detectors
 - Towards the optimal use of the information
 - → for particle identification, reconstruction, and for "cleaning"
 - + It requires an excellent Knowledge of particle/detector interaction theory
 - Towards the understanding and handling of "special" cases
 - ◆ It requires a specific developer profile
 - Stubbornness

 \rightarrow There are no problems, there are only solutions

Pragmatism
 Each and in the data set

→ Each special case is indeed special and requires specific treatment
 ◆ It requires to be developed for/with a physics analysis, possibly with data

• Towards performance improvement with superior motivation
Lessons learned [?] (3)

Exercise ()

- ◆ Study the design of other experiments : DELPHI, OPAL, L3, and ATLAS
- Answer the following questions
 - Was/is a particle-flow event reconstruction developed?
 - If yes, was/is its performance significantly better than simpler methods ?
 - was/is it used in physics analyses ?
 - with the help of slides 35/36, find the reason(s) for the answers above.
- Exercise (2) and hint for Exercise (1)
 - Another method, now called "energy flow", combines tracking and calorimeters
 - It opens a road around each track (momentum p) extrapolation
 - It either masks the calorimeter energy measured in this road, replaced by p
 - Or it replaces the charged-hadron expected energy by p
 - + Did/do the above experiments use this method ? If yes, why ?
 - Explain why, in ALEPH, the performance was poorer than PF ($\sigma_{\rm E}$ > 10GeV)

A detector not designed for Particle Flow: CMS ()

A detector not designed for Particle Flow: CMS (2)

original/official list of design requirements

- Good muon identification and momentum resolution over a wide range of momenta and angles, good dimuon mass resolution (≈ 1% at 100 GeV), and the ability to determine unambiguously the charge of muons with p < 1 TeV;
- Good charged-particle momentum resolution and reconstruction efficiency in the inner tracker. Efficient triggering and offline tagging of τ 's and *b*-jets, requiring pixel detectors close to the interaction region;
- Good electromagnetic energy resolution, good diphoton and dielectron mass resolution (\approx 1% at 100 GeV), wide geometric coverage, π^0 rejection, and efficient photon and lepton isolation at high luminosities;
- Good missing-transverse-energy and dijet-mass resolution, requiring hadron calorimeters with a large hermetic geometric coverage and with fine lateral segmentation.

A detector not designed for Particle Flow: CMS (3)

- Let's check the main criteria for a PF-friendly detector

- Simplicity
- Hermeticity
- Magnetic Field
- Granularity
- Material
- Redundancy

Simplicity

The design looks "simple": tracker, ECAL, HCAL, Muon chambers, B Field
 Difficult to say at first glance that CMS was not designed for PF
 It even seems able to follow each type of stable particles
 → Photon, electrons, muons, charged hadrons, neutral hadrons

Hermeticity

- The detector is hermetic
 - + Calorimetry up to MI = 5.1, tracking up to MI = 2.5, muons up to MI = 2.4

5-Feb-2011

Large magnetic field

- The magnetic field is large indeed
 - Superconducting magnet
 - Length 12.50m
 - Digmeter 6.30m
 - Designed to deliver 4 T
 Operated routinely at 3.8 T
 A bonus over ALEPH
 Note : Outside the HCAL !
 - Another bonus over ALEPH
 → See slides about Material

Muons

3D Granularity ()

- The tracker consists of
 - + A pixel detector with full 3D granularity, surrounding the beam pipe
 - 3 barrel layers, 2 pixel disks

3D Granularity (2)

3D Granularity (3)

- The ECAL consists of
 - + 75,848 crystals of Pbwoy
 - (15K towers in ALEPH)
 - ♦ With transverse size 2.2 x2.2 cm
 - (ALEPH : 3 x 3 cm)
 - Moliere radius 2.2 cm
 - (ALEPH 1.6 cm)
 - Radiation Lengths : 25.8 X₀
 (ALEPH : 22X₀)

Transverse granularity very similar to that of ALEPH

 But no longitudinal segmentation : photon/electron ID slightly less pure/efficient
 (3 segmentation in depth in ALEPH + 45 wire planes/module)

 Excellent energy resolution due to the homogenous material

 (^σ/_E)² = (^{2.8%}/_{\sqrt{E})² + (^{0.12}/_E)² + (0.30%)²
 (ALEPH: 20%/√E, but non essential)

3D Granularity (4)

ECAL crystals arranged towards quasi hermetic coverage

Patrick Janot

3D Granularity (5)

- End-caps covered by a preshower detector
 - ◆ with two layers of Lead + Silicon Strips (6 cm long, 2mm wide, 3X0)
 - Increase transverse granularity in the end-cap region
 - Add a modest level of longitudinal segmentation
 - Adds complexity • Worsens energy resolution $\stackrel{\bullet}{\xrightarrow{-1.28}} \pi^0 \to \gamma\gamma$
 - Overall outcome turned out to be neutral^{1.3}

3D Granularity (6)

- The HCAL consists of
 - + A sandwich of 16 plates of brass and scintillator tiles, from 5.5 to 10 λ_0
 - Read out into towers of transverse size 10 x 10 cm
 - → Similar transverse granularity to that of ALEPH
 - No longitudinal segmentation in the barrel (except HO), 2 depths in endcaps
 → Similar to ALEPH for hadrons, but no layer-by-layer readout for muons

Particle Flow Event Reconstruction 5-Feb-2011 Thin !

3D Granularity (1)

I ... but extensive 3D muon tracking behind the coil • For example, in the barrel $(|\eta| < 1.2)$ • 4 muon stations, the first 3 with → 8 layers of drift tubes 4 for the ro coordinate 4 for the z coordingte • And the fourth with only rø → For the momentum resolution ◆ Similar design in end-caps (M1 <2.4) • But cathode-strip chambers instead \rightarrow with anode wire measurements for z Muons should not be a problem ♦ But watch out HCAL thickness • Energetic pion punch-through likely

Redundancy : tough luck !

That one is easy

- There is essentially no redundancy for the energy measurements
 - Neither in the ECAL (only the crystal light is collected)
 - Nor in the HCAL (only the scintillator light is collected)
- Calorimeter cleaning might be challenging
 And CMS calorimeters turned out to be more noisy than ALEPH's ...
 Need to use isolation and timing of the signals to disentangle with noise → Careful with overcleaning !

Particle identification might be complicated by the absence of redundancy
But let's see how it comes out.

Material Budget (1)

As we already mentioned : the coil is behind the HCAL

- + One λ_o less in front of HCAL with respect to ALEPH
 - Less neutral hadrons lost, less charged hadrons showering

Material budget (2)

But ECAL services (0.5λ₀) between ECAL and HCAL Mostly back to ALEPH situation ... It was too good to be true !

Particle Flow Event Reconstruction 5-Feb-2011

Material budget (3)

The tracker is not a TPC (too slow for LHC), but a silicon tracker
 Remember the TPC Emostly empty]? And here we are now Emostly full]!

• The CMS tracker looks very thick

Particle Flow Event Reconstruction 5-Feb-2011

Material budget (4)

... And it is thick indeed !

Full Tracker radiography (MC information)

Patrick Janot

5-Feb-2011

CMS design and Particle Flow : Summary

- Situation so far, when compared to ALEPH
 - Simplicity : OK
 - (despite the presence of the pre-shower ?)
 - Hermeticity : OK
 - (did not talk of the forward HCAL, no tracker there)
 - ◆ Large magnetic field : OK
 - Actually much larger than ALEPH, may compensate granularity
 - ♦ 3D granularity : almost OK
 - Less tracker measurements, not all 3D; No ECAL longitudinal segmentation
 - Note: much better E resolution in ECAL; slightly worse in HCAL (120%√E)
- □ So far so good and even quite promising but ...
 - No redundancy whatsoever
 - Tracker material might be a Killer for particle-flow reconstruction
 - Note: what is the need of a pre-shower after 2X0 in the tracker ?

Overall CMS environment ()

Two major differences with ALEPH

- + The LHC is a pp collider (and from time to time a PbPb collider)
 - Much larger particle multiplicity in the final state than at LEP
 - → Not mentioning pile-up collisions, which enhance the problem
 - More confusion is possible, although granularity is mostly adequate to Keep the detector occupancy low enough

Overall CMS environment (2)

- I Two major differences with ALEPH (cont'd)
 - ◆ Energy spectrum for reconstructed particles from 200 MeV to 5 TeV
 - was 100 MeV to 100 GeV at LEP
 - \bullet For jets with very large p_{TD} charged and neutrals are less separated
 - Separation becomes smaller than detector segmentation at one point;
 - Particle identification becomes less efficient; momenta less well measured;
 - The PF performance converges (for jets) to a pure calo determination ?
 → Given the B field, the Σp_T at which this happens is probably large
 → There are always low p_T particles in jets, for which PF will help anyway

Back to 2005 : Checking CMS basic promises ()

- Pre-requisite for particle-flow reconstruction
 - Reconstruct (some) charge particle tracks for charged hadrons
 - Seeded with at least two hits in the pixel detector
 - \Rightarrow Originating from the beam axis within tight tolerances
 - Pattern recognition with a combinatorial Kalmann-Filter track finder \Rightarrow Request at least 8 hits and $p_T > 1$ GeV/c
 - * Reconstruct clusters in the ECAL and HCAL, for photons and hadrons
 - Seeded by cells above a given energy threshold
 → 230 MeV in ECAL, I GeV in HCAL
 - Surrounded by 4 direct neighbouring cells with smaller energies

 → Optimal use of the available granularity (better than ALEPH for HCAL)
 There might be several seeds/sub-clusters in a given "topological" cluster
 → Share the cell energies among the sub-clusters (according to d_{seed,cell})

 Ignore electrons and muons for the time being (for pedagogical purposes)

Back to 2005 : Checking CMS basic promises (2)
 First fully simulated jet, p_T = 100 GeV (Tracker thickness < 1X₀)
 Four particles : π⁺, π⁻, π⁰ and κ⁰_L

Back to 2005 : Checking CMS basic promises (4)

• The ECAL surface (η, ϕ) view in more details

Back to 2005 : Checking CMS basic promises (5)

• The HCAL surface view (η, ϕ) in more details

Back to 2005 : Checking CMS basic promises (6)

Track - ECAL cluster link

Back to 2005 : Checking CMS basic promises (1)

ECAL cluster - HCAL cluster link

Back to 2005 : Checking CMS basic promises (8)

Track - HCAL cluster link

Particle Flow Event Reconstruction 5-Feb-2011

Particle Flow Event Reconstruction 5-Feb-2011

Back to 2005 : Checking CMS basic promises (11)

Simplified block (1st step)

Particle Flow Event Reconstruction 5-Feb-2011

1.05

K0L

π

KOL - -

Particle Flow Event Reconstruction 5-Feb-2011

Particle Flow Event Reconstruction 5-Feb-2011

Patrick Janot

Back to 2005 : Checking CMS basic promises (16)

- □ In our famous first simulated jet ever :
 - Four particles generated : π^+ , π^- , π^0 and $\kappa^0_{\ L}$
 - Five particles reconstructed :
 - Two oppositely-charged hadrons (π^+ and π^-)
 - Three photons
 - \rightarrow Two from the π^0 decay and one from the K $^0_{
 m L}$ energy deposit
 - No neutral hadron

→ Because for each of the two tracks, E was compatible with p
 Note : the precedence given to photon identification in ECAL

May underestimate the ECAL energy deposits of neutral hadrons

 But the neutral hadron energy deposited in ECAL corresponds to
 10% neutral hadron x 30% ECAL fraction = 3% of event energy
 May lose <0.5% of the event energy from this identification choice
 (Was the same in ALEPH)

Particle Flow Event Reconstruction 5-Feb-2011

7-TeV Data, 7.5 nb⁻¹ (Uncalibrated

Track momentum (GeV/c)

100

70 80 90

20

20

140

7-TeV Data, 7.5 nb⁻¹ (Uncalibrated

120

Track momentum (GeV/c)

100

A few subtleties : the devil is in the details (4) Calibration of ECAL and HCAL energies for charged hadrons (cont'd)

A few subtleties : the devil is in the details (5)

- Cases E << p</p>
 - Arise from muons, in the majority of the cases
 - Muon reconstruction and identification is rather easy in CMS

→ Even in a very busy environment

 $J/\psi \rightarrow \mu\mu$ (pp)

A few subtleties : the devil is in the details (6)

- Cases with E << p : Muons (cont'd)</p>
 - Muon reconstruction/identification requires
 - A high-quality track in the silicon tracker
 - A high-quality track in the muon system
 - A global fit with a good χ^2
 - ◆ Typically very efficient (95% in the muon system acceptance) and 99.5% pure
 - As in ALEPH, these muon tracks are removed from the block
 - → Before the charged hadrons, photons, neutral hadron treatment
 - The remaining 5% lead to E << p cases
 - A much looser muon identification is used in this configuration
 → Isolated tracks (not likely to be a hadron)
 - → Tracker track only (plus a few hits in the muon system)
 - → Poor-quality tracker track (but good fit in the muon system)
 - Typical particle-flow attitude: use all detectors to improve particle ID/Reco

A few subtleties : the devil is in the details (7)

- Cases where E << p : Fake tracks, p mis-measurements</p>
 - Despite the tight selection for charge particle tracks (reminder)
 - Seeded with at least two hits in the pixel detector
 - \Rightarrow Originating from the beam axis within tight tolerances
 - Pattern recognition with a combinatorial Kalmann-Filter track finder
 → Request at least 8 hits and pT > 0.9 GeV/c
 - Leading to only 85% efficiency for primary charged pions (see just after)
 - ♦ The 3D-ish granularity of the tracker leads to ambiguities
 - Hits wrongly associated to tracks
 - Confusion in the pattern recognition
 - → Leading to take tracks with a 1-2/0 rate
 - → Leading to incorrect momentum determination
 - Typically create high-momentum tracks
 - \rightarrow The problem increases with the charge multiplicity, i.e., with jet p_T

A few subtleties : the devil is in the details (8)

Cases where E << p : Fake tracks, p mis-measurements (cont'd)</p>

- + The problem of fake tracks was solved in the following way
 - Reject tracks obviously fake (bad quality fit, missing hits along the track)
 - For each block, rank the remaining tracks according to \u03c6_{fit}(p_T)
 ⇒ In the very few blocks with more than one track (few %)
 - → For the very few tracks with $\sigma_{fit}(p_T) > 1$ GeV (0.1%) → Remove the worse tracks until E compatible with p
 - The "last" track is simply rescaled to make p = E
 - → 0.001 % of the tracks concerned by this procedure
 - Note : for these (small) blocks, the energy is given by the sole calorimeters
 But photon identification (and energy determination) still holds
 - →Individual charged particle multiplicity and momenta are still available
 →Momentum direction mostly from tracking and ECAL
 - Typical particle-flow attitude : use the redundancy of all measurements.

A few subtleties : the devil is in the details (U)
• A tracking efficiency of 85% : why? (cont'd)
• Remember : About 2X0, or 0.4
$$\lambda_0$$
, of material in the tracker
• About 20% of the hadrons interact in the tracker material
• Sometimes in a spectacular manner
A single K⁰L (210 GeV) interacting in the tracker after 15 cm:
Blue : true particles
Green : reconstructed tracks
(well, not yet)
• What happens to these tracks?
Not enough hits on the primary
Bad origin for the secondaries

200 Х

-200 -150 -100 -50 0 50 100 150 20

A tew subtleties : the devil is in the details (13) Increasing the tracking efficiency : Iterative tracking + Fake tracks come from wrong combinatorial hit association • Reduce the number of hits fed to the combinatorial track finder ? ♦ 1. Start from a very pure seeding • e.g., 3 pixel hits, very tight origin constraint, $p_T > 0.9$ GeV/c → 75% efficiency, less than 1% take rate ◆ 2. Reconstruct the corresponding tracks (≥3 hits) and "remove" the hits used • 40% of the hits in the tracker are removed in this first iteration ♦ 3. With the 60% remaining hits, try a looser seeding • e.g., 2 pixel hits, very tight origin constraint, $p_T > 0.9$ GeV/c → Adds 15% efficiency, but still less than 1% fake rate Because the combinatorial possibilities are much less 4. Reconstruct the corresponding tracks (≥3 hits) and "remove" the hits used • 10% of the hits are further removed in this second iteration

A few subtleties : the devil is in the details (14)

- Increasing the tracking efficiency : Iterative tracking (cont'd)
 - And so on with more iterations :
 - Third iteration : 3 pixel hits, tight origin constraint, $p_T > 0.2$ GeV/c
 - Fourth iteration : 2 pixel hits, looser origin constraint, $p_T > 0.3$ GeV/c
 - And even try to catch secondary tracks (interactions, conversions, decays ...)
 - Fifth : TIB/TID seeding, loose origin constraint, $p_T > 0.5$ GeV/c
 - Sixth : TOB/TEC seeding, very loose origin constraint, $p_T > 0.8$ GeV/c

efficiency vs pT

5-Feb-2011

A few subtleties : the devil is in the details (11)

- Electrons : Tracking
 - + Because they radiate, many electrons would have failed the Nhits > 8 cut
 - The Kalman filter pattern recognition quickly gives up
 - The iterative tracking was initially meant at solving this issue for PF
 - Tracks with at least 3 hits are used as seed
 - Use a Gaussian-Sum filter to follow the electron track all the way to ECAL
 - ◆ Issue : GSF tracking is slow
 - Use it only for pre-identified tracks
 Small number of hits
 > or : Poor quality fit
 > or : p/E_{ECAL} not far from unity
 > Linked to pre-shower hits

 Concerns only 5% of the tracks
 - → with 95% efficiency on electrons

A few subtleties : the devil is in the details (18)

- Electrons : Recovering the Bremsstralhung photons
 - + If nothing is done, radiated photon energy is counted twice
 - Once from the electron initial momentum, PIN
 - Twice from the energy from corresponding ECAL cluster(s), E_{BREM}
 - ◆ Create a new type of track EcAL cluster link
 - The link "by tangent"

→ Purple lines are tangents to the GSF track
Starting from each tracker layer
→ If the tangent points to a cluster

Link the cluster to the track

→ Another handle (not used) :

Compatibility between Ecluster and ΔP along the GSF track

A few subtleties : the devil is in the details (19)

- Electrons : Recovering the converted Bremsstrahlung photons
 - ◆ Tracks recovered by the 5th and 6th step of the iterative tracking
 - Linked by vertex to the original electron tracks
 - Linked to ECAL clusters in a classical way
 - → And added to the block ...

A few subtleties : the devil is in the details (20)

- Electrons : Identification
 - ♦ Use the tracker as a preshower !
 - Number of hits of the KF tracks
 - Energy loss along the GSF track : PIN POUT
 - Number of Bremsstrahlung photons associated to the track
 - · Comparison of EBREM and PIN-POUT
 - Comparison of E_{ELECTRON} + E_{BREM} and PIN

- Plus some calorimeter-Only quantities
 - Shower width along η
 - Linked HCAL energy

• ...

And combine in a boosted decision tree (could be any MVA tool)
70-80% efficiency in jets, 95% for isolated electrons

A few subtleties : the devil is in the details (22)

The tracker material was the cause of most devilish details

- The lack of redundancy was also a high price to pay for calorimeter cleaning
 - Needed to use information on timing, pulse shape, isolation, ... to get rid of → ECAL spikes (due to slow neutrons hitting APD's) →HF spikes (due to Cerenkov light from hadron-shower muons in PMT's) → HCAL spikes (due to ion feedback in HPD's)
- ◆ But efficient cleaning could be achieved (so far) without over-cleaning.

Particle-Flow performance in CMS (2)

• We now have a list of particles to work with (cont'd)

• with optimal particle-to-particle granularity + collimated jets at the lowest p_T 's

Patrick Janot

Particle-Flow performance in CMS (4)

Physics objects from the global event description with particles

Patrick Janot

Particle-Flow performance in CMS (8) Measured jet response in data • From γ tjet events (as in ALEPH) : use the γ p_T to predict the jet p_T р_т : 40-55 GeV/с р_т: 200-400 GeV/c Relative Jet Energy Response Relative Jet Energy Response $\sqrt{s} = 7 \text{ TeV}$ √s = 7 TeV 1.4 anti-k₊ R = 0.5 **CMS Preliminary** 1.4 anti-k₊ R = 0.5 CMS Preliminary corrected Particle Flow jets corrected Particle Flow jets 40 < p______ < 55 GeV 200 < p_^{dijet} < 400 GeV 1.2 1.2 0.8 0.8 Not corrected for the resolution bias Not corrected for the resolution bias MC MC Data 0.6 Data 0.6 Data+Residual Data+Residual 2 3 Ω 2 3 4 $|\eta|$ |η| • Impressive agreement between data and simulation

Slight HCAL end-cap over-calibration, visible only beyond tracker acceptance
 → Being calibrated away for 2011 data taking

Particle-Flow performance in CMS (9)

Systematic uncertainty on the jet energy scale (JES)

- From data : ECAL scale known to 1% (π^0 , Z). HCAL scale known to 5%
 - with 25% γ and 10% h°, the ultimate JES uncertainty is about 1%

Particle-Flow performance in CMS (10)

- Measured jet resolution in data
 - Still with γ tjet events, but also with di-jet events (p_T imbalance)

Particle-Flow performance in CMS (11)

Expected performance for Missing Transverse Energy, MET

- \bullet Aimed at measuring the p_T of neutrinos or \bigcirc
 - MET from particle flow is very intuitive (from p_T conservation):
 → Sum over all particles from particle flow reconstruction

$$MET = -\sum_{i=1}^{N_{\text{Particles}}} \vec{E}_{\text{T}}^{i}$$

 → The importance of having all particles reconstructed appears clearly Down to the smallest possible p_T with the best possible energy determination
 Another important variable, SET, measures the overall activity in the event SET = ∑^N_{Particles} Eⁱ_T

Particle-Flow performance in CMS (13)
• Expected performance for Missing Transverse Energy, MET (cont'd)
• Aimed at measuring the pr of neutrinos or •
• MET from calorimetry-alone can also be corrected for tracks :
• Raw MET :
Sum over all calo towers
$$MET = -\sum_{i=1}^{N_{\text{Therm}}} \vec{E}_{T}^{i}$$
• Corrected for muons :
Muon-corrected MET
$$-\sum_{i=1}^{N_{\text{Therm}}} \vec{E}_{T}^{i}$$
• Corrected for track expected response in a calorimetric road :
Track-corrected MET
$$-\sum_{i=1}^{N_{\text{Therm}}} (\vec{p}_{T}^{i} - \vec{E}_{T,\text{opacted}}^{i})$$
• ... which gives an "Energy-Flow" type of MET
• An intermediate step, if one is too shy to go to full Particle Flow

Particle-Flow performance in CMS (14)

Expected MET resolution for multi-jet events

- ♦ No MET expected in these events (no neutrinos) :
 - $\sigma(MET_{x,y})$ is the resolution to measure O

 $\sigma(MET_{x,y})$ (GeV)

Particle-Flow performance in CMS (16)

Expected MET resolution for events with missing energy

• w + jets events, with w $\rightarrow \mu\nu$: Transverse mass made with $p_T(\mu)$ and MET

Particle-Flow performance in CMS (1) Measured MET resolution for events with missing energy • w + jets events, with w $\rightarrow \mu\nu$: Transverse mass made with $p_T(\mu)$ and MET w + three jets w + one jet

Particle-Flow performance in CMS (18)

CMS was (by chance) almost designed for particle-flow reconstruction

- + Hermeticity, Simplicity, Granularity, Magnetic Field [Slide 35]
 - Found to be just adequate

→ Even if one could have done better (tracker, HCAL)

- Material : External constraints led to a (very) thick tracker [Slide 35]
 - Caused a lot of work for years to deal with it

→ Photon conversions, Electron Bremsstrahlung, Hadron nuclear interactions

- Redundancy : No energy measurement redundancy in the calorimeters [Slide 35]
 Source of continuous nightmares for calorimeter cleaning
- + But there was a handful of enthusiastic and Knowledgeable people [Slide 36]
 - who believed in the success of the project from first principles
 - And who completed it in about four years of ceaseless work
 → (Remember : four months in ALEPH, because of the thoughtful design)

+ Particle Flow is now used in most CMS physics analyses

Bad/suboptimal design is not the worse enemy !

- □ People are worse ...
 - + Religious war from calorimeter experts / users (50% of the CMS collaboration)
 - "Particle Flow never worked at a hadron collider" 2007
 - "Particle Flow is too complicated calorimeters are simple" 2008
 - "It may work on simulation, but it won't work on data" 2009
 - "It may work on data, but it does not bring much ..." 2010
 - Religious war from tracking experts / users (50% of the CMS collaboration)
 "Iterative tracking is hopeless is such an environment" 2006
 - "It may work for electrons, but what else do we need it for?" 2007
 - "It works, but it does not bring that much" 2008
 - Iterative tracking has become the official CMS tracking 2009
 Particle Flow is now used in most analyses in CMS 2011
 - But still people think it's magic inside

Concluding remark

- Extracts from Richard Wigmans' lecture on Monday, Jan. 31st
 - + A number of religious statements, typical of a calorimeter expert
 - "Calorimeter granularity brings only confusion"
 - 'The fact that 65% of the energy is perfectly measured in tracker is irrelevant"
 - "GEANTY has never predicted anything correctly concerning hadron calorimetry"
 - "Advocates of particle-flow reconstruction use phony statistics"
 → "Because they are not happy of the results"

Conclusion

- Once you have convinced yourself that you have a good idea
 - Based on scientific observations (first principles, feasibility study, ...)
 → Don't let experts (of something else) Kill your enthusiasm !

Just think, move forward, and FOLLOW YOUR DREAMS