

Distribution of Container Images From tiny deployments to massive analysis on the grid

Enrico Bocchi
CERN IT, Storage Group

"Build, Ship, Run, Any App Anywhere"

Build

Develop an app using Docker containers with any language and any toolchain.

Ship

Ship the "Dockerized" app and dependencies anywhere - to QA, teammates, or the cloud without breaking anything.

Run

Scale to 1000s of nodes, move between data centers and clouds, update with zero downtime and more.

© Docker Inc.

"Build, Ship, Run, Any App Anywhere"

Build

Develop an app using Docker containers with any language and any toolchain.

Ship

Ship the "Dockerized" app and dependencies anywhere - to QA, teammates, or the cloud without breaking anything.

Run

Scale to 1000s of nodes, move between data centers and clouds, update with zero downtime and more.

© Docker Inc.

- Container Registry: Specialized repository to store container images
 - Distribution of images by uploading (`docker push`) and downloading (`docker pull`)
 - Public, private, self-hosted

docker run -d -p 8080:8080 --name myregistry registry:2.7.1

The Docker Hub Registry

Most popular public registry – Docker's default

The Free Lunch Is Over

Why Docker?

Products

Developers

Pricing

Company

> 150 M images

> 15 PB storage

➤ 4.5 PB idle images from free accounts

Starting on November 1, images [...] not pushed or pulled in the last 6 months will be removed.

Containers at CERN

Images for Service Deployment

- Small images (< 1 GB)</p>
- Run on few nodes
- Re-use from upstream

Images for Scientific Analysis

- Immutable unit for reproducibility
- > ~10 GB per image
- Run on the Worldwide LHC Grid (potentially thousands of nodes)

Containers at CERN

Images for Service Deployment

- Small images (< 1 GB)</p>
- Run on few nodes
- Re-use from upstream

Images for Scientific Analysis

- Immutable unit for reproducibility
- > ~10 GB per image
- Run on the Worldwide LHC Grid (potentially thousands of nodes)

- Currently using GitLab Container Registry
 - ✓ Tight integration with CI pipelines, Registry storage associated to GitLab project
 - No Garbage Collection of unreferenced blobs, No support for OCI artifacts

- Active Community project, <u>CNCF Graduated</u>
- Storage of images and Open Container Initiative artifacts (e.g., Helm charts)

- Artifact Signing: Ensure trusted source for artifacts being installed
- Vulnerability Scanning: Based on external plugins

- Artifact Signing: Ensure trusted source for artifacts being installed
- Vulnerability Scanning: Based on external plugins

- Non-blocking Garbage Collection
 - Harbor provides **traditional storage** for images
 Advanced capabilities for **security**, management, replication
 - > How to distribute multi-GB images to thousands of nodes?

registry.cern.ch

locker pull registry cern ch/docker io/myre

CVMFS

CS3 2020 Talk

CVMFS for Science Environments

- CVMFS delivers software to SWAN
 - LCG Releases Frozen set of compatible packages
 - Step towards reproducibility
 - Software updates decoupled from analysis platform
- Diverse sciences and use-cases

CVMFS for Container Images

Server: Ingestion of existing images

- Extraction of layers into flat root filesystem
- Efficient file-based deduplication
- Publication into CVMFS repository

Client: Efficient pulling and caching

- On-demand fetching of required files
- No need to store the entire image locally
- Self-managed local cache

unpacked.cern.ch:

First CVMFS-powered Container Hub

- 700+ container images from major experiments
- Efficiency in deduplication
- Benefits from existing CDN and CVMFS clients for large-scale execution

CVMFS for Container Images

Server: Ingestion of existing images

- Extraction of layers into flat root filesystem
- Efficient file-based deduplication
- Publication into CVMFS repository

Client: Efficient pulling and caching

- On-demand fetching of required files
- No need to store the entire image locally
- Self-managed local cache

- How to integrate publication of images on both systems?
- Benefits from existing CDN and CVMFS clients for large-scale execution

Streamlined Management and Publication of Images

- - No one-fits-all solution
 - Simplify workflow for end-users
 - Prototype demonstrated and running

- ➤ Improved storage and distribution efficiency
- Supports scientific analysis use-case Enables large-scale analysis on the grid

Thank you!

Questions? || Comments?

Enrico Bocchi

enrico.bocchi@cern.ch

Backup

Recap on Containers Nomenclature

- Container: Runtime instance of an image and its execution environment
 - Provides isolation from the host environment (and from other containers)
 - Can access external resources Network, volumes, host devices, ...

Recap on Containers Nomenclature

- **Container:** Runtime instance of an image and its execution environment
- **Image:** Self-standing portable package of software
 - Embeds all is needed to run an application (software, dependencies, settings, ...)

CS3 2021

Union of several layers (tar files) stacked together

Recap on Containers Nomenclature

- Container: Runtime instance of an image and its execution environment
- Image: Self-standing portable package of software

Quick Recap on Containers Images

Image: Read-only template with instructions for creating a container

- Produced as several layers (tar files) stacked together
- Layering is used to improve storage utilization (can be reused)
- Intermediate layers are hidden

Quick Recap on Containers Images

```
[root@ThinkPad-X1]# docker history myimage
TMAGE
                   CREATED
                                      CREATED BY
                                                                                     SIZE
75cc2375258a
                   4 seconds ago /bin/sh -c yum -y install php
                                                                                     66.9MB
e779b8a4024f
                   9 seconds ago
                                     /bin/sh -c yum -y install nginx
                                                                                     77.8MB
470671670cac
                   4 days ago
                                     /bin/sh -c #(nop) CMD ["/bin/bash"]
                                                                                     0B
<missing>
                                      /bin/sh -c #(nop) LABEL org.label-schema.sc...
                                                                                     0B
                   4 days ago
<missing>
                                      /bin/sh -c #(nop) ADD file:aa54047c80ba30064...
                                                                                     237MB
                   7 days ago
```


Container Registries

Public: Docker Hub

dockerhub

 Private in cloud: Amazon ECR, Microsoft Azure, Google, IBM, Alibaba

On Premise: Red Hat Quay

. . .

The Docker Hub Registry

Most popular public registry – Docker's default

The Free Lunch Is Over

Why Docker?

Products

Developers

Pricina

Company

Rate Limiting Questions? We have answers

Nov 12 2020

As we have been implementing rate limiting on Docker Hub for free anonymous and authenticated image pulls, we've heard a lot of questions from our users about how this will affect them. And we've also heard a number of statements that are inaccurate or misleading about the potential impacts of the change. We want

- Unauthenticated: 100 pulls / 6 hrs
- Free accounts: 200 pulls / 6 hrs

Mirroring to private registries recommended

Containers at CERN

Images for Service Deployment

- Small images (< 1 GB)
- Run on few nodes
- Re-use from upstream

Images for Scientific Analysis

- Immutable unit for reproducibility
- ~10 GB per image
- Run on the Worldwide LHC Grid (potentially thousands of nodes)

- Currently using GitLab Container Registry
 - ✓ Tight integration with CI pipelines, Registry storage associated to GitLab project

- No Garbage Collection of unreferenced blobs, No support for OCI artifacts
- Requirements:
 - Vulnerability (CVE) scans, Storage for artifacts, GC
 - Efficient storage and distribution of images at scale

- Artifact Signing: Ensure trusted source for artifacts being installed
- Vulnerability Scanning: Based on external plugins (e.g., Clair, Trivy, Sysdig)

CVMFS ingesting Docker Layers

- DUCC: Daemon to convert and publish unpacked layers
 - Based on wishlist of Docker images to be ingested
 - Automatic generation and publication of thin image and unpacked layers

CVMFS Stratum 0s

cvmfs server package for repository management

```
# cvmfs_server transaction myrepo.cern.ch
# cd /cvmfs/myrepo.cern.ch && tar xvf myarchive.tar.gz
# cvmfs_server publish myrepo.cern.ch
```


Transformation

- Create file catalogs
- Compress files
- · Calculate hashes

Content-Addressed Objects, Merkel Tree

- Implicit file de-duplication via content-addressable objects
- Directory structure and file metadata stored in file catalogs

CVMFS Stratum 0s

- cvmfs server package for repository management
- Authoritative storage for repository content
 - Local file system
 - S3 compatible storage system (e.g., Amazon, Ceph)

- Updates applied by overlaying a copy-on-write union file system volume
- Changes are accumulated in the volume and synchronized afterwards

CVMFS Stratum 1s

- Stratum 1 servers in Europe, US, Asia
 - Reduced RTT to caches and clients
 - Improved availability in case of Stratum 0 failure

- RESTful CVMFS GeoAPI service
 - Clients submit request with desired resource and Stratum 1s list
 - Stratum 1 returns sorted list of Stratum 1s
 - Based on MaxMind IP database

```
HTTP GET
http://s1.cs3.org/cvmfs/<desired_resource>/api/v1.0/geo/<list_of_known_stratum1s>
```


Site Caches

- Off-the-shelf HTTP caching software
- Squid-cache as forward proxy
 - Recommended for clusters of clients
 - Reduced latency to clients and load on Stratum 1s
- Take advantage of cloud based CDNs
 - OpenHTC on CloudFlare
 - Helix Nebula Cloud (RHEA, T-Systems, IBM Cloud)

CVMFS Clients

- Client package for /cvmfs access
 - Runs on HPC, Supercomputers, end-users laptops
 - Docker support with in-container mount or CSI driver
 - Dynamic mounting of repositories with autofs
- Local caching
 - Local file system (soft limit enforced)
 - Tiered: In-memory and disk
 - Alien: Cluster and Network file systems
- Embedded tools for troubleshooting and FS verification

Conclusions

- Containers are widespread and customary
 - For service deployment by practitioners in IT
 - For scientific analysis in the High Energy Physics community
- There is no one-fits-all solution for management and distribution
 - Harbor features advanced capabilities
 - CVMFS enables efficient distribution at scale
- → Combine existing technologies
 - Simplify publication and management of images for end-users
 - Prototype demonstrated and running

