

Semiconductor and Scintillation Materials for Radiation Detectors

A. Bulycheva, R. Nurgalejevs, I. Krainjukovs, V. Gostilo

Baltic Scientific Instruments, Riga, Latvia

Semiconductor Detector Technologies

HPGe detectors- leaders in Gamma radiation registration!

3 Industrial companies in the World:

- Canberra (USA),
- Ortec (USA);
- Baltic Scientific Instruments (Latvia)

Industrial HPGe detectors

- Coaxial,
- Planar;
- Hemispherical.

Crystal sizes: Ø (7-110) mm

 $\Delta E = 0.8 \text{ keV at } 122 \text{ keV}$ $\Delta E = 1.8 \text{ keV at } 1.33 \text{ MeV}$

Segmented HPGe detector for Nuclear reaction study

Six-fold segmentation allows the determine direction of individual photons emitted in the nuclear reactions from a source placed inside the detector.

 $\Delta E = 1,0 \text{ keV} \text{ at } 122 \text{ keV}$ $\Delta E = 1,9 \text{ keV} \text{ at } 1332 \text{ keV}$

Ultra Low Background applications

Four-crystal system for neutrino-

antineutrino registration

System with cooper low-background cryostat for underground laboratory of Join Research Center of EU, Geel

Underground measurements

$\Delta E = 1,0 \text{ keV at } 122 \text{ keV}$ $\Delta E = 1,9 \text{ keV at } 1332 \text{ keV}$

The main task of such investigations is registration of very rare particles (1 pulse per day).

BSUIN - Baltic Sea Underground Innovation Network

The gamma background radiation measuring.

The background integral count rate per kg of germanium of the HPGe-detector was 0.028 s⁻¹ x kg⁻¹.

After purging the measuring chamber with nitrogen gas at a rate of 0.15 L/h the count rate was reduced to 0.021 s⁻¹ x kg⁻¹.

Europe's deepest Pyhasalmi mine (1444 m)

Our experience in Ultra Low-Background technique with HPGe spectrometers

1. Institute for Nuclear Research, Kiev, Ukraine

Underground laboratory in Solotvino Cave

2. V. G. Khlopin Radium Institute, St. Petersburg, Russia

Underground laboratory in Metro ("Gostiny Dvor" station) 120 meters water equiv.

- **3. National Research Centre "Kurchatov Institute", Moscow**, **Russia** *Multi-crystal HPGe detector with active shield*
- **4. Institute of Theoretical and Experimental Physics, Moscow, Russia** *HPGe detectors for GEMMA experiments at Kalinin NPP, 70 meters water equiv.*
- 5. Joint Institute for Nuclear Research, Dubna, Russia

HPGe spectrometers for research applications

6. Joint Research Centre of EU, Institute for Ref. Materials and Measurements, Geel, Belgium

Underground laboratory in HADES

7. CEA Saclay, Gif-sur-Yvette, France

Edelweiss experiment - Black matter search project

- 8. Max-Planck-Institut für Kernphysik, Heidelberg, Germany Black matter search project
- 9. Tsinghua University, Beijing, China Black matter search project

Si Ion-Implanted Detectors

 $I = (1 \div 40) nA$ $S_{active} = (50 \div 1200) mm^{2}$ $\Delta E = (12 \div 35) keV$

Open entrance window

Metalized entrance window

Protected entrance window

CdZnTe (4x4) Pixel Detectors

- High spectrometric performance from pixel to pixel
- Imaging in medicine and industry
- Space research applications

CZT Pixel Detectors

16x16 pixel detector based on crystal (15x15x10) mm³ 32x32 Pixel Detector based on crystal (12 x 12 x 5) mm³

CdZnTe Co-planar Grid Detectors

- State of the art performance:
 volume 15 x15 x10 mm³;
 - energy resolution 1.7 % at 662 keV (¹³⁷Cs)
- Application: Safeguard in nuclear industry

4-segmented Coplanar Grid Detector

TIBr detectors

High atomic numbers Z (TI=81, Br=35)

TIBr ring detector

TIBr single detectors

TIBr pixel and coplanar detectors

Prototype of TIBr pixel detector

Prototype of TIBr coplanar detector

Scintillation detectors

KEY PROPERTIES OF SOME SCINTILLATION MATERIALS

1	Hygros	Own	Density,	luminescen	Light Yield,	FWHM@	Detection	Emitted Light
	copic	Backgroun	g/cm ³	ce time,	photon/keV	662 keV	Efficiency (5 cm,	Wavelength,
		d		microseco		(2"x2"), %	point, Cs-137,	nm
				nd			2"x2"), %	
Nal(Tl)	+	Low	3.67	0.23	38	~6.5	~0.65	415
LaBr ₃ (Ce)	+	Significant	5.08	0.016	63	~ 3	~1	380
CeBr ₃	+	Low	5.23	0.018	60	~ 4.2	~1	370
Srl ₂ (Eu)	+	Low	4.60	1-5	90	~3.1-3.6	~0.4	450
						(1.5"x1.5")	(1.5"x1.5")	1

Mobile gamma spectrometric system **GammaCART** for radiation monitoring of terrain based on $LaBr_3$ (Ce)

Chemical Etching

Photolithography

Vacuum Deposition

Assembling

Thank you for your attention!

Questions?