Particle Physics teaching

at Vilnius University

Thomas Gajdosik

Vilnius University

CERN Baltic Conference, 06/2021

Teaching: Courses for Bachelor, Master, and Ph.D. level

Research in theory: investigating the Grimus-Neufeld model Standard Model (SM) + one fermionic singlet + two Higgs doublets

• [G-N] W. Grimus and H. Neufeld, Nucl. Phys. B **325** (1989) 18.

The Particle Physics group of Vilnius University

• staff:

- Aurelijus Rinkevičius: "CERN department", CMS
- Andrius Juodagalvis: CMS data analysis
- Darius Jurčiukonis: multi Higgs doublet models, modelling
- Thomas Gajdosik: theory, Grimus-Neufeld model
- postdoc:
 - Vytautas Dudenas: QFT, renormalization, Grimus-Neufeld model
- doctoral students:
 - Simonas Draukšas: QFT, renormalization, Grimus-Neufeld model
 - Marijus Ambrozas: CMS data analysis,

DAQ software development for the CMS tracker

Particle Physics related courses at Vilnius University

- bachelor studies:
 - Unix systems by Andrius Juodagalvis
 - * bash, root, etc. ...
 - Elementary Particle Physics 1
 - * first part of the book *Introduction to Elementary Particles* by David Griffiths
 - Introduction to High Energy Physics Analysis by Aurelijus Rinkevičius
 - * basics of: particle physics, statistics, Monte Carlo methods, data analysis
 - Elementary Particle Physics 2
 - * second part of the book Introduction to Elementary Particles by David Griffiths
- general university studies (i.e.: courses for everybody except physicists)
 - World of Particles by A. Juodagalvis, A. Rinkevičius, Christoph Schäfer, Albinas Plėšnys, TG
 - * outreach! aims to help critical thinking, countering fake news

Particle Physics related courses at Vilnius University

- master studies
 - Cosmology
 - * SR, GR, ACDM; concepts only; no star evolution
 - elementary particle physics (before: modern theoretical physics; then: quantum field theory)
 - * introduction to QFT; concepts only; hand-waving Standard Model
 - planned : QFT 1
 - \ast based on the lectures of David Tong
 - planned: QFT 2 and/or Standard Model
- doctoral studies:
 - Quantum Field Theory
 - * based on the book of Matthew D. Schwartz:

Quantum Field Theory and the Standard Model

Particle Physics theory research at Vilnius University

- we use the Grimus-Neufeld model (GNM) [G-N] W. Grimus and H. Neufeld, Nucl. Phys. B **325** (1989) 18.
 - it extends the Standard Model (SM)
 - with a single fermionic singlet
 - * the Majorana mass term for this gauge singlet allows the seesaw mechanism
 - and a second Higgs doublet
 - * its different coupling to the leptons allows for radiative neutrino masses
- the GNM can accomodate
 - the measured neutrino mass differences
 - the measured neutrino mixing angles (PMNS matrix)
- \Rightarrow the GNM can be seen as a neutrino extension to a generic 2HDM

Why choosing the Grimus-Neufeld model (GNM) as the research area?

- as an extension of the SM:
 - we have the opportunity to teach the SM, while still doing something new
 - this requirement of being something new comes regularly in bachelor and master thesis defenses . . .
 - \ldots as if a bachelor student is able to fully understand the SM \ldots
- there is very little published about the GNM
 - we can slowly work on our better understanding of the model
 - $\ast\,$ and still publish something that is genuinely new
- the different parts of the model highlight interesting theory mechanisms:
 - the seesaw mechanism
 - mixing of states
 - spontaneous symmetry breaking
 - interplay between tree-level and loop-level

Why choosing the Grimus-Neufeld model (GNM) as the research area?

• the GNM is complicated and simple at the same time

complicated:

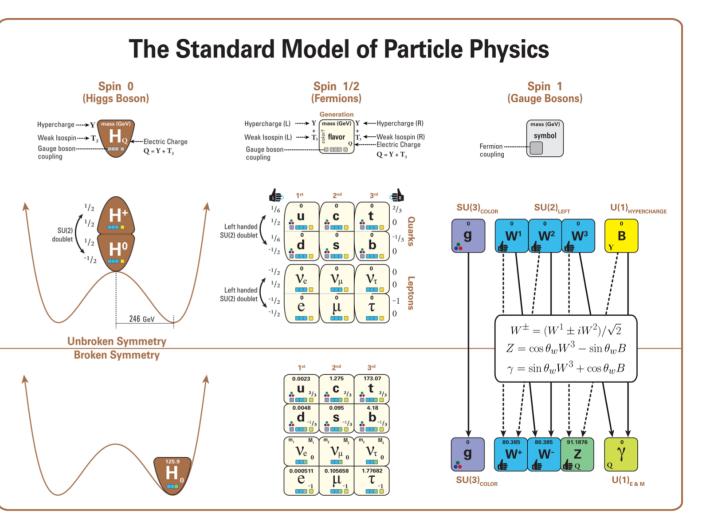
- in order to reproduce the neutrino sector couplings have to fulfill tight relations
 - technically: neutrino masses have to be analytically obtained for example, using the Grimus-Lavoura approximation
 - mass functions and neutrino mixing matrix have to be inverted
 - \Rightarrow we get a reduced parameter set for the model

simple:

- once these relations are implemented in the GNM
 - students can investigate simple processes and still do something new
 - * Higgs decays and branching ratios
 - * neutrino production at colliders
 - $\ast\,$ investigating RGE running, \ldots

The GNM as an extension of the Standard Model of Particle Physics (SM)

- the particle content of the SM
 - one Higgs boson
 - quarks and leptons
 - gauge bosons
 - * gluon
 - * W^{\pm} -bosons
 - * Z-boson
 - * photon



By Latham Boyle - Converted to PNG from File:Standard Model Of Particle Physics, Most Complete Diagram.jpg, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45839544

The GNM as an extension of the SM ... in terms of particles

- the particle content of the SM
 - Higgs boson
 - quarks and leptons
 - * originally there are only 3 left-handed massless neutrinos
 - gauge bosons
- in the Two Higgs Doublet Model part the GNM adds to the SM
 - one charged scalar boson (upper part of the scalar $SU(2)_L$ -doublet)
 - two neutral scalar bosons (lower part of the scalar $SU(2)_L$ -doublet)
 - $\ast\,$ usually written as scalar and pseudo-scalar
- in the neutrino sector the GNM adds only a single Majorana fermion
 - it is a singlet under all the SM gauge groups
 - \Rightarrow no gauge boson couplings
 - it has a Majorana mass term

The GNM as an extension of the SM ... in terms of parameters

- the parameters of the SM
 - gauge-Higgs sector:
 - * theory: gauge couplings $g_{SU(3)} = g_s$, $g_{SU(2)}$, $g_{U(1)}$ and Higgs potential μ^2 , λ
 - * experiment: couplings g_s , $\alpha_{\rm em}$, $G_{\rm F}$, angle $\cos \theta_w$, and Higgs mass m_H
 - fermion sector:
 - \ast theory: Yukawa couplings Y_U , Y_D , Y_E
 - * experiment: masses m_t , m_c , m_u , m_b , m_s , m_d , $m_{ au}$, m_{μ} , m_e , and mixing matrix V_{CKM}
- in the Two Higgs Doublet Model (THDM) part the GNM adds to the SM
 - the Higgs potential $V(\phi_1, \phi_2)$ with parameters: $(m_1^2), m_2^2, m_3^2, (\lambda_1), \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7$
 - the additional Yukawa couplings $Y_U^{(2)}$, $Y_D^{(2)}$, $Y_E^{(2)}$
- in the neutrino sector the GNM adds
 - the Majorana mass M_N
 - the additional Yukawa couplings $Y_N^{(1)}$, and $Y_N^{(2)}$

Using the Grimus-Lavoura approximation for calculating light neutrino masses [G-L] W. Grimus and L. Lavoura, JHEP **0011** (2000) 042 [arXiv:hep-ph/0008179].

- taking the interaction eigenstates of the neutral leptons ν_i and N_R
 - they couple to the first Higgs doublet and the vev by the Yukawa coupling $(Y_N^{(1)})_j$
- calculating the $(3 + 1) \times (3 + 1)$ symmetric mass matrix M_{ν}
 - at tree-level M_{ν} has rank 2 \Rightarrow only two masses are non-zero, one of them the "heavy" N_R
- considering only the "light" neutrinos ν_j leads to an effective 3×3 mass matrix \mathcal{M}_{ν}
- approximating in the corrections to \mathcal{M}_{ν} : only the loop with ν_{α}
- parametrizing $(Y_N^{(1)})_k = \frac{\sqrt{2}m_D}{v}u_{3k}$ and $(Y_N^{(2)})_k := du_{2k} + d'u_{3k}$
- calculating the effective $\mathcal{M}_{\nu}^{1-\text{loop}}$ and diagonalizing it by the Takagi decomposition:
 - \Rightarrow we get two light neutrinos, \hat{m}_r and \hat{m}_s , as analytic functions
 - \ast which we invert to detemine d and |d'| from the measured neutrino mass differences

 \Rightarrow we determine the Yukawa couplings $(Y_N^{(1)})_k$ and $(Y_N^{(2)})_k$ (12 real parameters)

- in terms of $\Delta m^2_{\rm atm/sol}$ and $V_{\rm PMNS}$ and two free parameters: m^2_D and $\phi' = \arg[d']$

Conclusions

- Bachelor students can work on processes involving the fixed $(Y_N^{(i)})_k$
 - up to now we managed only one simple bachelor thesis looking at an overly simple assumption
- The full renormalization of the model is still missing ⇒ advanced topics
 see later talks ...

Thank you

for listening

and for discussion and comments

and of course for the conference!

Backup slides

explaining the theoretical steps of building the model

Features of the Grimus-Neufeld model (GNM)

- an extension of the SM to describe neutrino masses
 - no change to the stong sector
 - only lepton- and Higgs-sector are modified
 - * by adding only one fermionic singlet
 - * and a second Higgs doublet

The particle spectrum contains additional to the SM

- four Majorana neutrinos
 - one heavy the added fermionic singlet
 - and three light Majorana neutrinos
 - \ast at tree-level two of them are massless
 - * at loop-level one of them gains a radiative mass
- the second Higgs doublet gives
 - a charged scalar H^+ and a two neutral scalars H_k^0

The rôle of seesaw mechanism and of THDM in the GNM

- "normal" seesaw gives a small mass for each heavy mass
 - ⇒ one heavy fermionic singlet gives only one light neutrino
 - the other two SM-like light neutrinos stay massless
- in the SM fermion masses come from Yukawa couplings
 - massless light neutrinos have vanishing Yukawa couplings
 - \Rightarrow massless light neutrinos stay massless
- in the GNM the THDM allows different Yukawa couplings
 - the Yukawa couplings to the second Higgs doublet
 can generate radiative masses for the light neutrinos
 - \Rightarrow the THDM has to be general (i.e. not a type-I or type-II or ...)

The Grimus-Lavoura approximation for calculating light neutrino masses [G-L] W. Grimus and L. Lavoura, JHEP **0011** (2000) 042 [arXiv:hep-ph/0008179].

- taking the interaction eigenstates of the neutral leptons u_j and N_R
 - coupled to first Higgs doublet and vev by the Yukawa coupling $(Y_N^{(1)})_j$
- calculating the $(3+1) \times (3+1)$ symmetric mass matrix

$$M_{\nu} = \begin{pmatrix} M_L & M_D^{\top} \\ M_D & M_R \end{pmatrix} \quad \text{with} \quad \begin{array}{l} M_L = 0_{3\times3} & \dots & \text{at tree level} \\ M_D = (m_{De}, m_{D\mu}, m_{D\tau}) = \frac{v}{\sqrt{2}} Y_N^{(1)\top} \end{array} \tag{1}$$

- at tree-level M_{ν} has rank 2 \Rightarrow only two masses are non-zero

• considering the loop corrections to M_{ν} :

$$\delta M_{\nu} = \begin{pmatrix} \delta M_L & \delta M_D^{\top} \\ \delta M_D & \delta M_R \end{pmatrix} \text{ with } \delta^{\text{Ct}} M_L = 0_{3\times3} \text{ , since } M_L = 0_{3\times3} \tag{2}$$

$$- \text{ but } \delta M_L \neq 0,$$

$$\text{coming from } \Sigma_V^{[2]}(p^2) = \frac{\alpha}{p+2} \underbrace{f_{p+k}}^{\beta} \sum_{j=j+k} \sum_{j=j+k}^{p} \sum_$$

The Grimus-Lavoura approximation

- reducing the problem to the "light" neutrinos
- \bullet leads to an effective 3×3 mass matrix \mathcal{M}_{ν}
 - at tree level $\mathcal{M}_{\nu}^{\text{tree}} = -M_D^{\top} M_R^{-1} M_D$ has rank 1,
 - at one-loop level $\mathcal{M}_{\nu}^{1-\text{loop}} = \mathcal{M}_{\nu}^{\text{tree}} + \delta \mathcal{M}_{\nu}$ can have rank > 1,

with $\delta \mathcal{M}_{\nu} = \delta M_L - \delta M_D^{\top} M_R^{-1} M_D - M_D^{\top} M_R^{-1} \delta M_D + M_D^{\top} M_R^{-1} \delta M_R M_R^{-1} M_D$

- the approximation assumes
 - δM_R is irrelevant (as M_R is a free unmeasured parameter, set $\delta M_R = 0$)
 - corrections with δM_D are subdominant
 - * suppressed by $Y^2 m_{\ell^\pm}/m_D$ or $g^2 m_{\ell^\pm}/m_D$ compared to $\mathcal{M}_
 u^{ tree}$
 - the correction δM_L is of the same order as $\mathcal{M}_
 u^{ t tree}$
- \Rightarrow at 1-loop only neutral bosons contribute to δM_L
 - calculated from $\Sigma_{V=Z^0}^{[2]}(p^2)$ and $\Sigma_{S=G^0,h,H,A}^{[2]}(p^2)$
 - * Z^0 and G^0 sum up to a gauge invariant contribution

Using the Grimus-Lavoura approximation

• parametrize the Yukawa couplings as

$$(Y_N^{(1)})_k = \frac{\sqrt{2}m_D}{v} u_{3k} \qquad (Y_N^{(2)})_k := d u_{2k} + d' u_{3k}$$
(3)

- with three orthonormal vectors $\vec{u}_{\alpha} = u_{\alpha k}$
 - * that mix the three neutrinos $\nu_k = u_{\alpha k} P_L \zeta^M_{\alpha}$ at tree-level
- calculate the effective 1-loop 3×3 mass matrix

$$(\mathcal{M}_{\nu}^{1-\text{loop}})_{jk} = u_{2j}u_{2k}A + (u_{2j}u_{3k} + u_{3j}u_{2k})B + u_{3j}u_{3k}C$$
(4)

* which is obviously only rank 2:
$$u_{\alpha j}^{*}(\mathcal{M}_{\nu}^{1-\text{loop}})_{jk}u_{\beta k}^{*} = \begin{pmatrix} 0 & 0 & 0\\ 0 & A & B\\ 0 & B & C \end{pmatrix}_{\alpha\beta}, \quad (5)$$

- with $A = d^2 f_1$, $B = d' df_1 + i d \frac{m_D}{v} f_2$, $C = d'^2 f_1 + 2i d' \frac{m_D}{v} f_2 + \frac{m_D^2}{v^2} f_3$,

and the f_i depending on the parameters of the Higgs sector (and the SM)

• diagonalize $\mathcal{M}_{\nu}^{1\text{-loop}}$ by the Takagi decomposition :

$$V_{\mathsf{PMNS}}^{\top} \mathcal{M}_{\nu}^{1-\mathsf{loop}} V_{\mathsf{PMNS}} = \mathsf{diag}(\hat{m}_o = 0, \hat{m}_r, \hat{m}_s) \tag{6}$$

part I

Using the Grimus-Lavoura approximation

- since we get \hat{m}_r and \hat{m}_s as analytic functions
 - we can invert these functions to determine parameters
- we choose to detemine d and |d'|
- since $\hat{m}_o = 0$, the measured neutrino mass differences
 - determine $\tilde{m}_2 = \sqrt{\Delta m_{\rm sol}^2}$ and $\tilde{m}_3 = \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2}$
 - $\ast\,$ attention: there are several possibilities of ordering the neutrinos
- the Takagi decomposition also determines the mixing matrix V_{PMNS}
 - which determines the vectors $u_{\alpha k}$ that define the Yukawa couplings
- \Rightarrow we determine the Yukawa couplings $(Y_N^{(1)})_k$ and $(Y_N^{(2)})_k$ (12 real parameters)
 - in terms of SM parameters
 - the parameters of the neutrino sector: $\Delta m^2_{\rm atm/sol}$ and $V_{\rm \tiny PMNS}$
 - parameters of the Higgs sector: m_h^2 , m_H^2 , m_A^2 , mixing angle $\beta \alpha$
 - and two free parameters: m_D^2 and $\phi' = \arg[d']$

What we achieved is

- a one-loop improved parametrization for the GNM
 - this parametrization reproduces neutrino data exactly
 - $\ast\,$ the masses at one loop
 - $\ast\,$ the mixing matrix within the approximation
 - but not a full renormalization
 - * ... this is still a goal for the (far) future
- We can avoid doing the renormalization ourselves :
 - by using a generic tool: a spectrum calculator
 - a spectrum calculator does the renormalization numerically
 - the problem in our case: implementing the seesaw numerically
- with limiting the seesaw scale to $\sim 10^4\,\text{GeV}$
 - FlexibleSUSY (FS) provides qualitative correct neutrino masses
 - $*\,$ studies in FS suggest a promising seesaw scale of $\sim 10^{-6}\,GeV$