Craftsmanship and Brainchildren of HEPP

Yuri Dokshitzer

1st CERN Baltic Conference *Tartu 2021* The only well-designed and efficiently functioning pan-European body

CERN

(with a proud obsolete name)

CERN marvels

precision mechanics micron precision @ km scale electrical engineering superconductivity, I & B * cryogenics create and maintain cosmic vacuum new materials radiation-resistant & radiation-sensitive new instruments and technologies medical imagery data acquisition and processing Fast & Very Big Data * WWW

online Sotheby's auction of the original code that have introduced HTML, URL, HTTP, etc, running from 23 to 30 June 2021

Impatient Instigators & Capricious Consumers Experiment Theory

an eternal love-hate story

Cross-feed & Crossbreed

Experiment

speed of light c gravitating light muon (1936) 1949 strange particles Ω^- hyperon tau-lepton (1974) HEPP neutrino oscillations

Theory Special Relativity General Relativity 2nd lepton generation pion (1935) quark model SU(3) flavor symmetry 3rd generation neutrino masses (?)

the `Alpha' of the New Times : the discovery of `Omega'

- the first true `Ahaa!' of the Quark model

 the final decisive `Ahaa!' came with discovery of the 4th Quark - Charm - 10 years later

Quantum Field Theory

20 914

Relativistic Quantum Multi-Body

dynamics

Quantum

Photoelectric Effect

Energy of electrons kicked off irradiated surface of a metal increases with the frequency of light.

The *number* of electrons does increase with *intensity* of light, but the *energy* does not!

Light gets absorbed as a *particle* with $E_{\gamma} = h\nu$ - "photon"

The role of quantum physics - to teach humility: get used to live with - study, interpret, predict bizarre phenomena involving unimaginable objects

Relativistic

another weird fact

- dependence of properties of **space** and **time** on the velocity of the observer also took a good century to get used to.

To digest and accept such an anti-intuitive consequence of Special Relativity as *shrinkage of time* became so much easier nowadays

when we carry the proof in the pocket on a daily basis!

GPS and Relativity

Orbital clocks move with velocity v = 14000 km/hour ≈ 4 km/sec $(v/c)^2 \approx 2 \cdot 10^{-10}$

$$t = \frac{t_s}{\sqrt{1 - (v/c)^2}} \approx (1 + 10^{-10})t_s$$

amounts to 7 μ s/day slowdown.

The story does not end here, though

20000 km above the Earth gravity is 4 times weaker, and the clock ticks faster due to Einstein's General Relativity!

The net effect: 45-7=38
$$\mu$$
s/day.

Without account for Relativistic effects GPS would become useless in about 2 minutes! (10 km/day accumulated error)

Relativity: velocity and beyond

 $v_e \sim \alpha_{e,m} \simeq 1/137$ **Chemistry** (atoms & molecules) $v_{\pi} \sim m_{\pi}/M_p \simeq 1/7$ **Nuclear Physics Particle World** intrinsically, essentially relativistic and not only because typical velocities are large... The key feature of Relativistic Dynamics - antiparticles! you want to study, start probing $e e^{-} e^{+} e^{-}$ you come closer and see instead

Extra headache: not just "multi" but indefinitely multi-!

Elementary Particles (as of today)

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,						
Leptons spin = 1/2			Quar	Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	
$v_{e}^{electron}_{neutrino}$	<1×10 ⁻⁸	0	U up	0.003	2/3	
e electron	0.000511	-1	d down	0.006	-1/3	
$v_{\mu}^{ m muon}_{ m neutrino}$	<0.0002	0	C charm	1.3	2/3	
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3	
$ u_{ au}^{ ext{ tau}}_{ ext{neutrino}}$	<0.02	0	t top	175	2/3	
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3	-1/3	

BOSONS

(spin=1)

 $\left(\gamma, W^{\pm}, Z^{0} \right)$

+

g

(*spin=0*)

+ H

abstractions and shortcomings of QFT point-like objects engaged in local (point) interactions 20 014 - the only framework known today

enabling us to derive verifiable predictions

Prise to pay - divergencies : mass and interaction constant (charge) *not calculable* A sneaky way out: cannot calculate in a sensible manner? - don't!

Try to express everything in terms of physical (measurable) *masses* and *charges*.

If/when you succeed - your theory is *renormalisable*, ready for making high-accuracy predictions.

> How bad a situation? depends on your ambitions

Non-renormalisable QFTs Specific phenomena in a limited range of parameters **Effective QFTs** small-energy $\pi - N$ interactions critical phenomena effective d.o.f. (e.g. phonons) + stock markets etc ("financial physics") NB: George Zweig, James Simons, Patrizio Vinciarelli, Alexandre Migdal...

Example of *non*-renormalisable dynamics - Quantum Gravity

Otherwise, all QFTs we need are renormalisable $(QED \rightarrow GWS) + QCD$ **SM** QFTs real world **BSM**, Grand Unification model QFTs **Super-Symmetry** playing ground A technical proof that "God, though sophisticated, is not malicious" (c)

Quantum Electrodynamics Feynman-Schwinger-Tomonaga QED

Electro-Week Interactions or GWS theory Glashow-Weinberg-Salam

1979

1965

Quantum Chromodynamics Gross-Wilczek-Politzer NB: NP not for QCD but for "Asymptotic Freedom" -

2004

the most unexpected and marvellous property of quark-gluon interactions

Polarisation of QED vacuum makes the electric charge "run" with photon virtuality

$$\alpha \to \alpha(\mathbf{k^2})$$

L.Landau 1954

Electric charge *increases* at small distances (large momentum transfers).

For many years such a behaviour was believed to be general, common for all QFTs, as it follows from the basic properties: *relativity* (crossing), *causality* (cause vs effect) and *unitarity* (probability)

In QCD, on the contrary, effective charge was found to *fall* with increase of momentum transfer!

This allows theorists to keep under *quantitative control* what happens with "*QCD partons*" - quarks and gluons at small space-time intervals: *Hard Processes*.

Summary of the QCD coupling measurements

High precision predictions in electro-week sector Controlling hard lepton-hadron and h-h interactions **Evolution of quark-gluor** Distribution of hadrons i Structure of hadron flows First glance at confineme Errors, misconcepts, pi uarrels breathtal les. Cc ntrol W Tir Or

nd quark masses? red that?" (c) ergy **To be continued...**