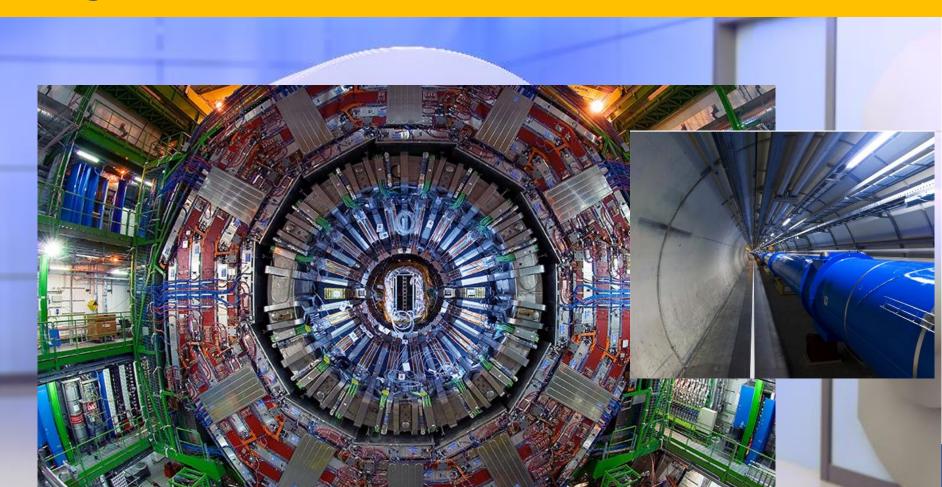
CERN Baltic Conference

30th June 2021


Elena BENEDETTO

for the NIMMS Collaboration

NIMMS: The Next Ion Medical Machine Study @ CERN

Bring the entire CERN...

... in a hospital room

... in a hospital room

The **Next Ion Medical Machine Study (NIMMS)** is a CERNbased initiative, leveraging on CERN technologies developed for HEP for a new generation of accelerators for cancer therapy with ion beams

- Promote the development within a wide collaboration;
- In contact with final users, to privilege "market pull" vs."technology push";
- Combining competences and expertise from many different CERN and non-CERN groups and teams:

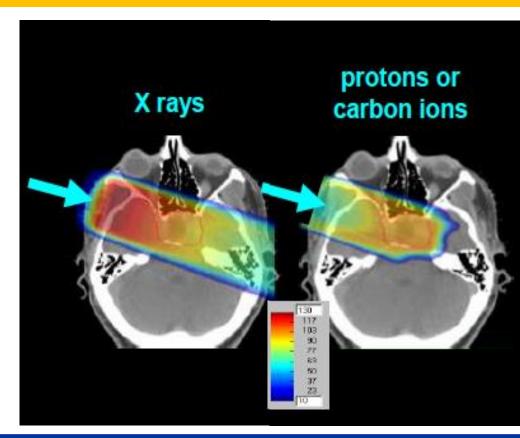
SEEIIST, TERA Foundation, GSI, INFN, **Riga Technical University**, CIEMAT, Cockcroft Institute, Imperial College, CNAO, MedAustron, U. Melbourne, ...

Credit: most of the material (and slides!) about NIMMS come from M.Vretenar's KT-seminar 19/10/2020: https://cds.cern.ch/record/2742439?In=en

Curing cancer with ions

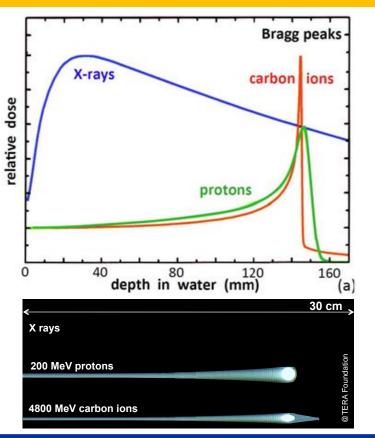
Cancer a leading cause of death: **10 millions** in 2020.

Radiotherapy


- for 50% patients
- alone or in combination with surgery, chemio, (immunotherapy)

X-rays go through tissues:

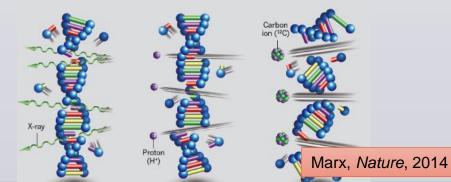
- healthy cells repair
- cancer cells die


Charged particles stop @target:

...the Bragg peak!

The Bragg Peak: particles stop, X-rays go through!

Energy is deposited at a given depth, which depends on the beam initial energy:

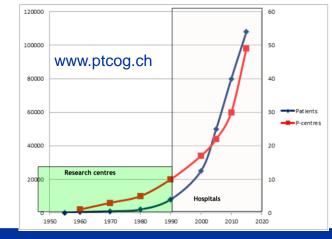

- Protons: 60 250 MeV (Bp = 2.42 Tm)
- Carbon: 100 430 MeV/u (Bρ = 6.6 Tm)

Why Carbon ions?

✓ double-strand breaks (not reparable)

~2.7x

- ✓ 2-3x more damage (RBE)
- ✓ also in "radioresistant" tumours


Medical accelerators are not new!

- 1954: 1st patient treated at Berkeley
- 1993: Loma Linda, first hospital facility
- 1994: NIRS-HIMAC built in Japan
- 1996-2000: PIMMS at CERN "Proton Ion Medical Machine Study" with TERA and MedAustron
- 2006: Industrial accelerators on the market (mostly p cyclotrons)
- 2009: Heidelberg; 2011: CNAO; 2016: MedAustron

BUT Hadron therapy remains a niche

22,000 patients/year (2018) vs.25,000,000 patients/year with

Size (& cost) matters!

Carbon ~ Proton Bp x 2.7

Superconducting magnets to make it smaller, cheaper, & more energy efficient

IBA proton gantry

HIT carbon gantry (600 tons)

Specifications from the scientific community

Accelerator

- Lower cost, compared to present (~120 M€);
- □ Higher beam intensities than present (10¹⁰ ppp);
- □ Reduced footprint, to about 1'000 m²;
- Lower running costs.

Delivery

- □ Fast dose delivery (possibly with 3D feedback);
- Equipped with a rotating gantry;
- □ Using multiple ions (Carbon, Helium and others)
- □ With range calibration and diagnostics online.

(Archamps Workshop, June 2018)

Workshop Location Archamps, France Venue: European Solentific Institute (ES Dates: 19-21 June 2018

Ideas and technologies for a next-generation facility for medical research and therapy with ions

NIMMS Origins and Goals

Started from an impulse by U. Amaldi in 2016-17 Structured after the **Archamps Workshop** in 2018 International collaborations started in 2018 CERN project

Support from EU-funded projects:

- **HITRI***plus* Integrating Activity for Ion Therapy
- I.FAST General innovation programme for accelerator R&D

In line with CERN mission, build on CERN expertise to develop a **portfolio of technologies** that can be used in a next generation facility, more than developing a unique design (NIMMS as a «toolbox»)

>

SEEIIST as strategic partner and reference user

The **SEEIIST** (South East Europe International Institute for Sustainable Technologies) is a new international partnership aiming at the construction of a new Research Infrastructure for cancer research and therapy in South East Europe (8 member countries and 2 observers).

Basic concepts for a SOUTH-EAST EUROPE INTERNATIONAL INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

- SEEIIST is supported by the EU to develop the facility design, in collaboration with CERN.
- Goals are to develop a new advanced design and to build international cooperation and scientific capacity in a region that will join EU but is less develop and still devided, in the line of "science for peace".
- Promoted by H. Schopper, former Director General of CERN, and S. Damjanovic, ex Minister of Science of Montenegro.
 M.Vretenar's KT-seminar

CERN

NIMMS workpackages

	Workpackage	Objectives	Superconductivity, the main avenue to
1	Superconducting magnets	Comparison of magnet technologies (CCT, costheta) and cables (NbTi, HTS). Design of prototype magnets (gantry and synchrotron) for the selected option.	accelerator miniaturisation. Long-standing CERN expertise, needs high fields, pulsed operation, strong curvature
2	High-frequency hadron linacs	End-to-end beam dynamics design, study of 180-degree bend, design of medium-beta accelerating structures (5-20 MeV/u), RF optimisation.	The "full-linac" , a different approach for fast 3D scanning of tumours
3	Gantries	Advanced design and comparison of gantry options (optics and mechanical structure).	The gantry , a strategic component merging traditional CERN competences: magnets, beam optics, mechanics.
4	Synchrotron design	Design of Superconducting synchrotron and of a backup normal conducting version with advanced features: multi-turn injection for 10 ¹⁰ particles per pulse, fast and slow extraction, multiple ion operation, new upgraded linac injector.	Design of synchrotrons , key element of most ion therapy systems, is a core
5	AI/ML	Predictive maintenance, accelerator design adn dose delivery	competence of CERN. Under construction, the newly added one!
			M.Vretenar's KT-seminar

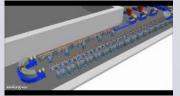
Three alternative accelerator designs

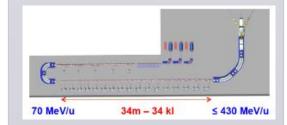
Improved synchrotron (warm)

Equipped with several innovative features: multi-turn injection for higher beam intensity, new injector at higher gradient and energy, multiple extraction schemes, multi-ion.

> Normal-conducting synchrotron

Improved synchrotron (superconducting)


Equipped with the same innovative features as warm, but additionally 90⁰ superconducting magnets. Circumference ~ 27 m


New linac (10 MeV/u)

Linear accelerator

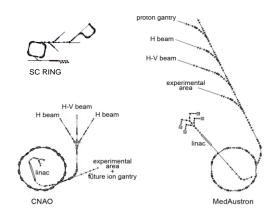
Linear sequence of accelerating cells, high pulse frequency.

Length ~ 53 m

E.Benedetto, U. Amaldi, V. Bencini, M. Dosanjh, Y. Foka, D. Kaprinis, M. Khalvati, A. Lombardi, M. Sapinski, M. Vretenar, X.Zhang. CERN-NIMMS-Note-1, <u>https://cds.cern.ch/record/2748083?ln=en</u>

Sextupoles

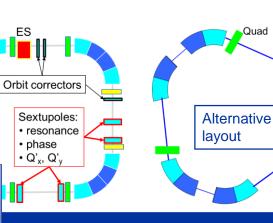
M.Vretenar's KT-seminar



New linac (10 MeV/u

perconducting

Superconducting synchrotron


MS

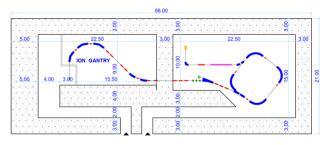
A superconducting C-ring at the same scale of CNAO and MedAustron

TERA synchrotron Design: CCT magnets 3.5T Aperture 60 mm Total circumference 27 m

E. Benedetto, N.AlHarbi, L.Brouwer, D.Tommasini, S.Prestemon, P.Riboni and U.Amaldi, <u>https://arxiv.org/abs/2105.04205</u>

Advantages:

> Smaller dimensions


operation cost

Reduced power

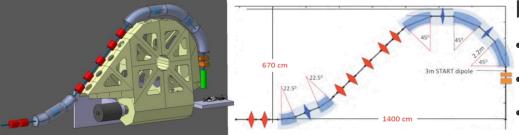
consumption

Lower construction and

Needs: 3 – 4 T magnets ramped at 1 T/s

A compact single-room ion therapy facility in about 1,000 m² (comparable w. proton system)

Partially supported by HITRI*plus* EUfounded project and CERN DOCT program



Superconducting rotating gantry

Compact gantry with 4T AG-CCT magnets of 90^o (TERA design, 2018):

- external radius <5m
- rotating by 200^o and attached to the wall
- magnets are extremely challenging

Design with 3T, 45° cosine-theta magnets

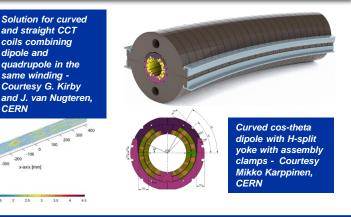
- similar mechanical structure concept
- more conservative, less R&D
- time to construction 10 years

U,Amaldi, N. Alharbi, E Benedetto¹, P.L. Riboni and M. Vaziri, TERA Foundation,D. Aguglia, V. Ferrentino. G. Le Godec, M. Karppinen, D. Perini, E. Ravaioli and D. Tommasini, CERN, CERN-NIMMS-Note-002: <u>https://cds.cern.ch/record/2766876?ln=en</u>

SC magnets for synchrotrons and gantries

High Energy Physics is promoting a wide international effort in the development of conductors, designs and technologies for SC magnets.

NIMMS aims at profiting of this R&D effort for compact synchrotron and gantry magnets.


Some of the challenges are common, other are specific for medical accelerator magnets: ramping field, curved shape, quadrupole integration, use of cryocoolers.

dipole and

CERN

A few ideas

Magnet Parameters for HITRI+ and IFAST

	_	
Βρ (Tm)	6.6	6.6
B ₀ dipole (T)	3.0	4-5
Coil apert. (mm)	70-90	60 (90)
Curvature radius (m)	2.2	2.2 , ∞
Ramp Rate (T/s)	1	0.15-1
Field Quality (10 ^{-₄})	1-2	10-20
Deflecting angle	90°	0 - 45°
Alternating-Gradient	yes (triplet)	N/A
Quad gradient (T/m)	40	40
B _{quad} peak (T)	1.54- 1.98	1.2
B _{peak} coil (T)	4.6 - 5	5.6-7
Operating current (kA)	< 6	< 5
Type of Superconductor	NbTi (Nb ₃ Sn)	NbTi (curved), HTS
		(straight)
Operating temperature (K)	5 (8)	5 (20)

Partially supported by

HITRIplus - Integrating Activity for Ion Therapy

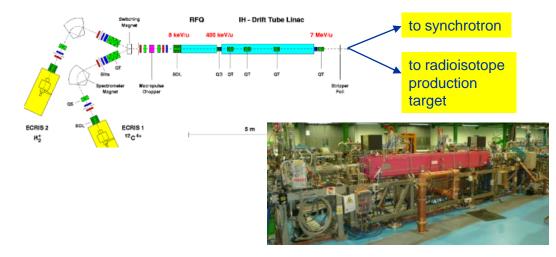
WP8 on Magnet Design: overview and assessment of various conductors (LTS, HTS, various types of cables) and magnet layouts (costheta, CCT, racetracks – spit coils or flare ends – etc...). Design construction and test of 1 demontrator 500 mm long (either LTS or HTS)

I.FAST – General innovation programme for accelerator R&D

WP8 on Innovative Superconducting Magnets: General consensus to go toward CCT, different conductors. Development of a HTS cable suitable for low losses - large size - fast cycling - synchrotrons (led by GSI)

M.Vretenar's KT-seminar Both WPs coordinated by L. Rossi (II

E. Benedetto, NIMMS-@ CBCKN,

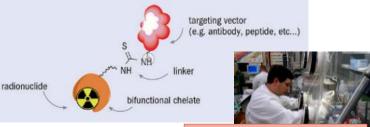


Synchrotron injector Linac

The SEEIIST facility will have a **new injector linear accelerator** (linac) designed for higher energy (10 MeV/u), with lower cost, higher efficiency and higher intensity.

With a minor additional investment, the linac could have 2 modes of operation: for injection in the synchrotron, and for sending the beam to a target for production of medical radioisotopes.

M. Vretenar, CERN P. Foka, GSI A. Marmaras, U. Thessaloniki G. Bisoffi, INFN/CERN


An example: Targeted Alpha Therapy

Alpha-emitting therapeutic isotopes: charged atomic nuclei emitting α particles (2 protons+2 neutrons), produced by bombardment of nuclei with an α beam.

Attached to antibodies and injected to the patient: accumulate in cancer tissues and selectively deliver their dose.

Advanced experimentation going on in several medical centres, very promising for solid or diffused cancers (leukaemia). Potential to become a powerful and selective tool for personalised cancer treatment.

If the radioisotope is also a gamma or beta emitter, can be coupled to diagnostics tools to optimise the dose

M.Vretenar's KT-seminar

Summary

NIMMS started 20y after "PIMMS" (which gave birth to CNAO and MedAustron), to enable a next generation of medical facilities.

A toolbox of CERN core technologies and competencies, with impact on society - medicine: Superconducting magnets, Mechanics, Linac, Beam dynamics and AI/ML

Users are existing medical facilities and potential new centers, such as SEEIIST, in the South-East Europe

Rich program open to collaborating partners!

edetto, NIMMS @ CBC