

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Additive Manufacturing Applications for Accelerator Technologies (I.FAST)

1st CBC 30.06.2021

Andris Ratkus, Guntis Pikurs, Toms Torims

UNIVERSITY

What is I.FAST ?

Innovation Fostering in Accelerator Science and Technology, an Innovation Pilot Project of Horizon 2020 Framework Programme for Research and Innovation, addressing Research Infrastructure Advanced Communities.

- Goal: demonstrating the role of Research Infrastructure in the translation of Open Science into Open Innovation.
- How: 48 beneficiaries, jointly at 14 WP and 56 tasks to developing technologies for the next generation of particle accelerators.
- Timeline: 4 years, starting 1 May 2021.

Additive Manufacturing Partnership and Collaboration in I.FAST

Experience and know-how in additive manufacturing (AM)

- Fraunhofer IWS
 PoliMi
- RTU Design

FAST

- TalTech
 Digitalization
- Rösler Surface Technology Srl.
- TANIOBIS GmbH supplier of feedstock powders

Industry

Leading accelerator labs which are doing R&D within AM

• CERN

Additive Manufacturing

- CNRS + CEA
- INFN Padova

Accelerator expertise

Accelerator Technologies in use

- Globally around ~ 40,000 accelerators
 - Demand increasing
 - Cost–effective technologies are needed

Fundamental science

~1%

Medicine ~33%

Industry ~66%

✓ Ion Implantation

 Electron beam materials processing

 Electron beam irradiation

✓ Ion Beam Analysis

✓ X-ray inspection etc.

Additive Manufacturing

Societal applications

(medicine, industry, environment, etc.)

4

Source: Maurizio Vretenar (CERN)

Additive manufacturing

Additive Manufacturing

Source: Antonello Astarita (DICMAPI)

Source: Ana Miarnau (CERN)

5

AM applications and potential developments

TWO potential directions

Additive manufacturing production

Additive manufacturing repairs

Source: Fraunhofer IWS

Source: INFN PD

Additive Manufacturing

AM production benefits

• **Design** – add material where it's needed

Heat exchanger design

Hydraulic bloc

Source: Yicha Zhang, UTBM

Minimal weight and compliance

Source: Grégoire Allaire, Laboratoire CMAP, Ecole Polytechnique, France

FAST

AM production benefits

- Exotic materials
- <u>Reduce number of components</u>

- Cost–effective solution
- Individual series

Additive Manufacturing

Source: GE

AM repair benefits

Potential advantages

- Can be done in hostile environments (radiation ...)
- In-situ repairs

FAST

- Wide range of materials
- Micro and macro scale repairs
- Repair as a part of maintenance
- Time and money Saving technology

Source: G. Sattonnay (IPAC19)

State of play

Fraunhofer IWS "Production" PoliMi

- Collaboration with accelerator physicists and accelerators engineers
- Work on several design proposals
- Create **simulation** to test the new design
- Simulate AM process to overcome first iteration issues
- Study of CERN measurement requirements and procedure

Source: aie.com.vn

Source: 3dnatives.com (Carlota V.)

Planed outcomes in two years

- AM **Survey** of applications and potential developments
- Promote how AM can address needs of Accelerator Community
- Additive manufacturing opens up new prospects at CERN
- Demonstrator, prototype

Way to Innovation – Roadmap for AM

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.