Comparative analysis of two LYSO crystal bars by photoluminescence and Raman spectroscopy

Anatoli Popov

Institute of Solid State Physics, University of Latvia, Riga, Latvia

and ISSP UL CERN team:

Vladimir Pankratov, Anna Ivanova, Viktorija Pankratova

Dr. Anatoli I. Popov

Leading research scientist Institute of Solid State Physics, University of Latvia H= **31**, > **200 paper**, > **3000 citations**

- 1978 -M.S.+B.S. degrees: Department of the Molecular1984and Chemical Physics (1978-1982), Department of
General and Applied Physics (1982-1984),
Moscow Institute of Physics and Technology, MIPT,
Dolgoprudnyi, Московский Физико-технический
институт, МФТИ
- 1990Ph D in Physics, Institute of Physics, The Latvian
Academy of Sciences

RESEARCH INTERESTS

Radiation damage of insulators. Point defects. Optical properties of insulators. Luminescence. VUV, IR and FTIR spectroscopy. Synchrotron radiation spectroscopy (VUV, XD, XAS, EXAFS, FTIR). Neutron imaging and spectroscopy. **Scintillators.** Storage phosphors. Dosimetry and radiation imaging etc.

Established Collaboration with EUROfusion, CERN, ILL, ESS, MAX-IV, DESY

Luminescence test parameters

LYSO (Lu_{2-x}Y_xSiO₅) LYSO matrix sample from <u>Adi Bornheim</u> (Caltech))

- Luminescence spectra have been taken at previously established conditions
 - Excitation: 264 nm (Ce1), 294 nm (Ce1), 325 nm (Ce2)
 - Two cerium sites, designated Ce1 (seven oxygen ligands) and Ce2 (six oxygen ligands)

LYSO luminescence test

(Viktorija Pankratova and Vladimir Pankratov)

Laser Ekspla NT ns tunable

Manufacturer: Ekspla Model: NT 342/3UV Description •Nd:YAG Q-switched laser including second and third harmonic generator and OPO •Spectral range: 210-2300 nm •Scanning accuracy: 0.1 nm – 1 nm depends on spectral region •Pulse width: 5 ns, •Repetition rate: 10 Hz, •Output pulse: • \geq 7 mJ @450 - 1000 nm,

- ≥ 25 mJ @450 500 nm,
- ≥ 2 mJ @220 410 nm,
- ≥ 3 mJ @250 300 nm.

•Linewidth: < 4.5 cm⁻¹

LYSO luminescence test (V. Pankratova)

264 nm (Ce1 4f-5d₃)

294 nm (Ce1 4f-5d₂)

325 nm (Ce2: Ce³⁺ 4f-5d, resolved at low temperatures with emission at 480 nm)

Ce1 (seven oxygen ligands) and Ce2 (six oxygen ligands)

Luminescence test parameters

- 2 LYSO:Ce samples from different vendors (approx. 6 cm in length)
- Spectra have been taken at previously established conditions
 - Excitation: 264 nm (Ce1), 294 nm (Ce1), 325 nm (Ce2), 365 (Ce1)
 - Two cerium sites, designated Ce1 (seven oxygen ligands) and Ce2 (six oxygen ligands)
 - In the energy transition process, the Ce1 energy transition values of $5d \rightarrow 4f^2F_{5/2}$ and $5d \rightarrow 4f^2F_{7/2}$ are 3.17 eV and 2.93 eV, respectively, corresponding to 392 nm and 424 nm while the Ce2 energy transition values ($5d \rightarrow 4f^2F_{5/2}$ and $5d \rightarrow 4f^2F_{7/2}$) are 2.72 eV (457 nm) and 2.53 eV (490 nm).

Sample #247: luminescence spectra

264 nm (Ce1 4f-5d₃)

294 nm (Ce1 4f-5d₂)

325 nm (Ce2: Ce³⁺ 4f-5d, resolved at low temperatures with emission at 480 nm)

Ce1 (seven oxygen ligands) and Ce2 (six oxygen ligands)

Excitation at 264 nm (Ce1)

Excitation at 294 nm (Ce1)

Sample #247: luminescence spectra

Sample #247: luminescence excitation

Measured at emission at 390 nm

Measured at mission at 500 nm

Excitation: 264 nm (Ce1), 294 nm (Ce1), 325 nm (Ce2)

Sample #247: luminescence excitation

Sample #349: luminescence spectra

Sample #349: luminescence spectra

Excitation at 325 nm (Ce2)

Sample #349: luminescence excitation

Sample #349: luminescence excitation

LYSO #247 decay kinetics (excitation 375 nm, 50 ps)- measurements of intrinsic Ce3+ emission

Emission wavelength 390 nm

Emission wavelength 400 nm

Emission wavelength 480 nm

- the Ce1 energy transition values of $5d \rightarrow 4f^2F_{5/2}$ and $5d \rightarrow 4f^2F_{7/2}$ are 3.17 eV and 2.93 eV, respectively, corresponding to 392 nm and 424 nm while the Ce2 energy transition values $(5d \rightarrow 4f^2F_{5/2} \text{ and } 5d \rightarrow 4f^2F_{7/2})$ are 2.72 eV (457 nm) and 2.53 eV (490 nm).

LYSO #349 decay kinetics (excitation 375 nm, 50 ps)

Emission wavelength 390 nm

Emission wavelength 400 nm

Emission wavelength 480 nm

LYSO #349 decay times

Emission	Side 1		Side 1 Edge 1		Side 1 Edge 2		Side 2		Side 2 Edge 1		Side 2 Edge 2		Side 3		Side 4	
	τ_1 , ns	τ ₂ , ns	τ_1 , ns	τ_2 , ns	τ_1 , ns	τ_2 , ns	τ_1 , ns	τ_2 , ns	τ_1 , ns	τ_2 , ns	τ_1 , ns	τ_2 , ns	τ_2 , ns	τ ₂ , ns	τ_2 , ns	τ ₂ , ns
390 nm	26.5±0.6	41.5±1.2	20±2	35.6±0.7	18±2	35.7±0.5	17±3	35.4±0.4	20±2	35.9±0.7	20±2	36.1±0.7	19±3	35.6±0.6	24.2±1.0	39.5±0.8
400 nm	25.4±1.0	40.4±1.0	17±2	35.4±0.5	19±2	36.3±0.5	22±3	36.8±0.9	13±2	34.7±0.3	16±2	35.5±0.4	20.8±1.3	37.5±0.5	19.6±1.4	36.9±0.5
480 nm	43.35±0.09		41.92±0.11		42.45±0.11		43.43±0.12		42.48±0.11		42.80±0.11		42.99±0.11		43.28±0.11	

LYSO #247 decay times

Emission	Sid	le 1	Sid	le 2	Sid	le 3	Side 4		
LIIIISSIOII	τ ₁ , ns	τ_2 , ns	τ ₁ , ns	τ_2 , ns					
390 nm	24.8±1.3	42.3±0.9	24.0±1.4	41.6±0.7	26.4±1.4	43.4±1.0	23±2	40.7±0.7	
400 nm	22.2±1.3	41.2±0.5	26.6±1.3	43.9±1.1	23.8±1.3	42.3±0.7	26±2	43.0±1.0	
480 nm	46.81	±0.12	46.37	±0.12	46.20	±0.14	46.72±0.12		

According to literature LYSO:Ce decay times of Ce³⁺ are as follows:

- Ce1: 35-38 ns ¹, 35,4 ns ²
- Ce2: 59 ns ¹, 56 ns ²

excitation type.

Difference between our and literature data are from different

1. Martins, A. F. *et al.* Spectroscopic analysis of LYSO:Ce crystals. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* **172**, 163–167 (2017).

 Wojtowicz, A. J. *et al.* Scintillation properties of selected oxide monocrystals activated with Ce and Pr. Opt. Mater. (Amst). 28, 85–93 (2006).

LYSO:Ce Raman spectra Homogeneity test

- Spectra of crystalline samples were acquired at RT, air conditions •
- Optical microscope was used to centre the laser beam (532 nm)

units

Each of two crystals was measured 6 times along the principial crystal direction ٠

Both crystals were proved to be homogenous.

Both crystals have the same frequencies of the main vibrational modes, with a slight difference in the intensities.

LYSO

#273

СМ

LYSO #349

Conclusion

- Using luminescence spectroscopy we have performed a detailed comparative analysis of two LYSO crystal bars.
- the main characteristics known from the literature are confirmed, all used set-ups available at ISSP LU can be used for further comparative analysis.
- Future plans include
- A) preparation of small pieces
- B) radiation damage studies
- C) low-temperature (LNT-RT) TSL
- D) VUV synchrotron luminescence
- E) EPR
- F) Theoretical modelling (with and without Ce^{3+} of $Lu_{2-x}Y_xSiO_5$)