

ESTIMATING THE FAKE LEPTON BACKGROUNDS FOR THE DRELL-YAN DIFFERENTIAL CROSS SECTION MEASUREMENT USING 2016 CERN CMS DATA

Marijus Ambrozas, Andrius Juodagalvis

Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University <u>marijus.ambrozas@gmail.com</u>

CERN BALTIC CONFERENCE 2021

Drell-Yan process (DY)

- A quark and an antiquark annihilate producing a lepton-antilepton pair
- Important for constraining parton distribution functions (PDF) and testing the precision of the standard model (SM)
- Dominant background in the analyses of other processes
- Final states under investigation:
 - Electron-positron pair (electron channel)
 - Muon-antimuon pair (muon channel) ← presented in this talk
- Main measurement variable dilepton invariant mass m_{ll}

DY differential cross section $d\sigma/dm$

The CMS Collaboration. JHEP 12 059, 2019

Compact Muon Solenoid (CMS)

Background estimation for DY cross section measurement

3

Drell-Yan backgrounds

- Only the final state can be observed for any high-energy physics process
- In case of the Drell-Yan process, we are searching for a pair of isolated leptons
- Impossible to tell whether the signal was produced by a pair of leptons originating from a prompt or delayed emission process
- Prompt leptons could originate from the Drell-Yan process
 - We call leptons from delayed emissions "fake" from now on
- Need to estimate the number of **background** (non-Drell-Yan) events in the selected event sample
- Most significant DY backgrounds: ZZ, $\overline{t}W$, tW, WZ, WW, $t\overline{t}$, DY $\rightarrow \tau\tau$, W+Jets, QCD multijet
- Background contribution can be estimated from simulation (MC), but data-driven methods are believed to be more accurate

M. Ambrozas

Jet events

- Jet is a cone-shaped particle stream produced by a final-state quark or gluon in a hadronization process
 - Leptons may be produced in delayed emission processes inside jets
- On rare occasions a lepton-dominated jet can be misidentified as an isolated lepton (we then call it a "fake" lepton)
- Dilepton final state sample can be contaminated with one (W+Jets) or two (QCD multijet) fake lepton events
- The "fake rate" and "matrix" methods are data-driven methods used to estimate misidentified particle background yields

CBC2021

The "fake rate" method

- We calculate the probability that a **fake lepton** from the "loose" sample will pass the "tight" selection criteria (fake lepton selection efficiency)
 - "loose" and "tight" samples are defined by constraints on some analysis variables

- N_i^{QCD} is extracted from data (with some help from MC)
- After *f* is obtained, we can use it to estimate the number of background events
 - However, W+Jets and QCD selection regions are contaminated with other processes as well
 - Other contributions are subtracted using MC or fitting template distributions

T – tight, N – non-tight

Background estimation for DY cross section measurement

←loose

The "matrix method"

7

- A more sophisticated method is the "matrix method", which also uses prompt lepton efficiency
- Prompt efficiency should help estimating contamination with other processes in W+Jets and QCD selection regions (ideally no need to use MC)
 - T tight; N non-tight; P prompt; F fake
 - f fake lepton selection efficiency; p prompt lepton selection efficiency

$$\begin{array}{c} \text{Measured} \\ \text{Yields} \\ & & \begin{pmatrix} N_{TT} \\ N_{TN} \\ N_{NT} \\ N_{NN} \end{pmatrix} = \begin{pmatrix} p_1 p_2 & p_1 f_2 & f_1 p_2 & f_1 f_2 \\ p_1 \tilde{p}_2 & p_1 \tilde{f}_2 & f_1 \tilde{p}_2 & f_1 \tilde{f}_2 \\ \tilde{p}_1 p_2 & \tilde{p}_1 f_2 & \tilde{f}_1 p_2 & \tilde{f}_1 f_2 \\ \tilde{p}_1 \tilde{p}_2 & \tilde{p}_1 \tilde{f}_2 & \tilde{f}_1 \tilde{p}_2 & \tilde{f}_1 \tilde{f}_2 \end{pmatrix} \begin{pmatrix} N_{PP} \\ N_{PF} \\ N_{FP} \\ N_{FF} \end{pmatrix}$$

here $\tilde{x} = 1 - x$

• We can invert the matrix to find the hidden values like this:

$$\begin{pmatrix} N_{PP} \\ N_{PF} \\ N_{FP} \\ N_{FF} \end{pmatrix} = \frac{1}{(f_1 - p_1)(f_2 - p_2)} \begin{pmatrix} \tilde{f}_1 \tilde{f}_2 & -\tilde{f}_1 f_2 & -f_1 \tilde{f}_2 & f_1 f_2 \\ -\tilde{f}_1 \tilde{p}_2 & \tilde{f}_1 p_2 & f_1 \tilde{p}_2 & -f_1 p_2 \\ -\tilde{p}_1 \tilde{f}_2 & \tilde{p}_1 f_2 & p_1 \tilde{f}_2 & -p_1 f_2 \\ \tilde{p}_1 \tilde{p}_2 & -\tilde{p}_1 p_2 & -p_1 \tilde{p}_2 & p_1 p_2 \end{pmatrix} \begin{pmatrix} N_{TT} \\ N_{TN} \\ N_{NT} \\ N_{NN} \end{pmatrix}$$

Unknown (hidden) numbers

$$N_{PP}$$
 – DY and prompt lepton bkg
 N_{PF} + N_{FP} – mostly Wjets (ideally)
 N_{FF} – mostly QCD (ideally)

 N_{TT} – events in "signal selection" region

 $N_{TN} + N_{NT}$ – events in "*W*+Jets selection" region

```
N_{NN} – events in "QCD selection" region
```

CBC2021

Dimuon mass distributions in the signal region

Expected result after applying a data-driven method

Data

 $DY \rightarrow \mu\mu$ (MC)

 $DY \rightarrow \tau\tau$ (est.)

tt (est.)

 $\overline{t}W$ (est.)

ZZ (MC)

WZ (MC)

WW (est.)

OCD (est.)

W+Jets (est.)

Estimated fake and prompt muon selection efficiencies

M. Ambrozas

CBC2021

9

Matrix method validity and expectation regions

- MC tests have shown that each process has a slightly different prompt and fake selection efficiencies
- We cannot differentiate between different processes in real data
- Consequently, some processes get weighted incorrectly in the matrix method
- We need to subtract the incorrectly weighted distributions using MC in order to get a meaningful result
 - The argument that no MC is needed for matrix method is no longer valid
 - The matrix method procedure becomes very similar to the fake rate method
- In order to compare the performance of the matrix and fake rate methods, we apply all the same procedures on them and assign expectation bars that we estimate from:
 - Sensitivity to the statistical uncertainty of fake and prompt selection efficiencies
 - Sensitivity to the binning of fake and prompt selection efficiencies
 - Sensitivity to jet multiplicity in the event

QCD estimation results

1579. 1579.

The expectation bars are relatively similar in width (~30%) but the matrix method suggests higher background yield. The difference could be assigned to systematic uncertainty.

W+Jets estimation results

NUNIVERSITAS VILUERS

The expectation bars are significantly wider for the fake rate method but the matrix method provides a very discontinuous spectrum, making the fake rate result look more reliable in the case of DY $d\sigma/dm_{ll}$ measurement.

Matrix method

- The "fake rate" method and "matrix method" are equivalent methods for fake lepton background estimation but have different procedures:
 - "Fake rate" method relies on fake lepton selection efficiency and MC subtraction of prompt dilepton events to estimate the backgrounds from fake-enriched selection regions
 - "Matrix method" relies on both fake and prompt lepton selection efficiencies and makes use of fake-enriched selection region together with signal selection region to be less reliant on MC
- Both "fake rate" method and "matrix method" have their own advantages and shortcomings:
 - "Fake rate" method heavily relies on MC accuracy but is less complicated
 - "Matrix method" is less reliant on MC but needs very precise tuning of fake and prompt selection efficiencies, making it hard to achieve reliable results for $d\sigma/dm_{ll}$ measurement where DY signal is very dominant
 - In the case of mixed states (e.g., electron+muon which were not discussed in this presentation), one cannot split the uncertainties per fake process (muon or electron) when using the "matrix method"
- Having both measurements allow us to pick one as a central value and use the difference between the two methods as an estimate of systematic uncertainty
- One possible improvement for the "matrix method" could be using maximum likelihood fit to obtain the most probable N_{PP}, N_{PF}, N_{FP}, N_{FF}, values for the given data distributions and measured prompt and fake efficiencies

E.g., as described in <u>JHEP 11 (2014) 031</u>

Thank you for your attention!

Marijus Ambrozas, Andrius Juodagalvis

marijus.ambrozas@gmail.com

Fizikos fakultetas

M. Ambrozas

Background estimation for DY cross section measurement

14

Standard model

Wikimedia Commons: MissMJ

Proton structure and pp collisions

- Proton consists of three valence quarks and quark-gluon "sea"
- The structure of the proton is described using parton distribution functions (PDFs)
- Interactions between non-valence quarks are possible in proton-proton collisions

https://atlas.physicsmasterclasses.org/en/zpath_protoncollisions.htm

https://news.fnal.gov/2012/05/guarks-and-gluons-and-partons-oh-my/

CBC2021

Background estimation for DY cross section measurement

Large Hadron Collider

- Large Hadron Collider (LHC) is the largest particle collider ever made
- It produces 13 TeV proton collisions; it is the highest collision energy achieved by humanity so far
- Compact Muon Solenoid (CMS) is one of the four largest experiments at LHC

swissinfo.ch

- For a particle, invariant mass is its rest mass, calculated as $m = \sqrt{E^2 |\vec{p}|^2}$
- Invariant mass for particle systems is calculated as follows (example for 2 particles) $m_{12}^2 = (E_1 + E_2)^2 |\vec{p}_1 + \vec{p}_2|^2$
- If two particles are the only decay products of a single mother particle, their invariant mass m₁₂ will be equal to the mass of the mother particle

MC normalization

- Simulated event distributions from different processes must be normalized to observed integrated luminosity L_{int} (proportional to the produced number of collisions)
 - Otherwise you cannot compare data and simulation quantitively
- Simulated events can have different individual weights ω_i^{GEN} assigned to them by MC event generator
- For a process with a cross section σ at integrated luminosity \mathcal{L}_{int} we expect $N_{exp} = \sigma \mathcal{L}_{int}$ events
- If we want to make the effective number of events in the simulated dataset equal to the expected number of events, we must assign a specific weight ω_i to each event:

$$\omega_i = \omega_i^{GEN} \frac{\sigma \mathcal{L}_{int}}{\sum_{j=1}^N \omega_j^{GEN}}$$

| Electron channel | Muon channel |
|---|--|
| Trigger:
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ | Trigger: HLT_IsoMu24 OR HLT_IsoTkMu24 (used trigger matching) |
| $p_T^{Lead} > 28 \; GeV,$
$p_T^{Sublead} > 17 \; GeV,$
$ \eta_{SC} < 2.4,$
Excluding $1.4442 < \eta_{SC} < 1.566$ | $p_T^{Lead} > 28~GeV, \ p_T^{Sublead} > 17~GeV, \ \eta < 2.4$ |
| Electron MediumID | Muon TightID, $I_{PF}^{rel} < 0.15$ |
| Exactly two electrons passing the event selection | Two muons with smallest vertex fit $\chi^2 < 20$,
Opposite-sign,
3D angle $< \pi - 0.005$ rad |

Event selection criteria (fake efficiency estimation)

Electron channel

Muon channel

| Tight | Loose |
|---|---|
| Triggers: HLT_PhotonX_v,
where X is an OR of 22, 30, 36, 50, 75, 90, 120, 175 | |
| $p_T > 25 \text{ GeV}, \eta_{SC} < 2.4, \text{ excluding } \eta_{SC} \in (1.4442, 1.566)$ | |
| Bar $\sigma_{i\eta i\eta} < 0.013, H/E < 0.13, Z $ | rel:
$\Delta \eta_{in}^{seed} < 0.01, \Delta \phi_{in} < 0.07$ |
| Endcap:
$\sigma_{i\eta i\eta} < 0.035, H/E < 0.13$ | |
| Number of mis | ssing hits <= 1 |
| Electron MediumID | _ |
| Veto events with more than 1 electron passing | |

| Tight | Loose | |
|--------------------------------------|----------------------|--|
| Trigger: HLT_Mu50 | | |
| $p_T > 52 \text{ GeV}, \eta < 2.4$ | | |
| Muon TightID | | |
| $I_{PF}^{rel} < 0.15$ | $I_{PF}^{rel} = any$ | |

Event selection criteria (prompt efficiency estimation)

The working principle is to select the muon emerging from W decay in W+Jets event.

| Muon channel | |
|--|--|
| HLT_Mu50 | |
| Single tight muon in the event | |
| $p_T > 52 \; GeV, \; \eta < 2.4$ | |
| $MET > 20 \ GeV, M_T > 60 \ GeV$ | |
| One jet with $p_T > 40 \ GeV$ | |
| Veto all additional jets with $p_T > 17 \ GeV$ | |