Higher spin particles: dark matter and high energy colliders

Niko Koivunen

29.6.2021

 Representations
 Multispinor
 Feynman rules
 Phenomenology
 Summary

 ●0
 ○
 ○
 ○
 ○

Representations

- Particles are in irreducible representations of Poincare group, defined by mass and spin.
- Lorentz group has two subgroups: $SU(2)_L$ and $SU(2)_R$.
- Ambiguity when assigning particle into irreducible representation of Lorentz group: "two spins", left- and right-handed: (j_L, j_R)

Spin	Rep	DOF	Example	Rep	DOF
0	(0,0)	1	KG	(0,0)	1
$\frac{1}{2}$	$(\frac{1}{2},0)$	2	ψ_{L}	$(\frac{1}{2},0)$	2
1	$\left(\frac{1}{2},\frac{1}{2}\right)$	4	gauge	(1,0)	3
$\frac{3}{2}$	$(\frac{1}{2},\overline{1})$	8	SUSY	$(\frac{3}{2},0)$	4
2	$(\bar{1},1)$	16	gravity	$(\bar{2},0)$	5
j > 2	?	?	?	(j,0)	2j + 1

 $(j,0)\oplus(0,j)$

- Originally Weinberg used $(i, 0) \oplus (0, i)$ to describe any spin $(1964)^1$
- The representation $(j,0) \oplus (0,j)$ has the correct number of degrees of freedom for massive fields
- This allows to avoid the usual problems of higher-spin fields (non-physical degrees of freedom tend to reappear as ghost in interacting theories)
- Practically useful reformulation of Weinberg's original was presented in Criado, Koivunen, Raidal, Veermäe, arXiv:2010.02224 [hep-ph] (PRD)

¹Weinberg, Phys. Rev. **133**, B1318 (1964)

990 29.6.2021

3/8

Multispinor formalism $(j,0) \oplus (0,j)$

• Use fully symmetric "multispinor", $\psi_{a_1...a_{2j}} = \psi_{(a)}$, to represent spin-j field (j = any spin!):

$$\psi_{(a)}(x) = \int \frac{d^3p}{(2\pi^3)(2E_p)} \sum_{\sigma} \left[\hat{a}_{\sigma}(p) u_{(a)}(p,\sigma) e^{ipx} + \hat{a}_{\sigma}^{\dagger}(p) v_{(a)}(p,\sigma) e^{-ipx} \right]$$

Satisfies equations of motion (order-2j in derivatives(!)):

$$i\partial^{(\dot{a})(a)}\psi_{(a)}=m^{2j}\psi^{\dagger(\dot{a})}\quad \text{and}\quad (\Box+m^2)\psi_{(a)}=0$$

Propagator (only single pole!):

$$S(p) = i \frac{p_{(a)(\dot{a})}}{p^2 - m^2}$$

ullet Mass dimension of $\psi_{(a)}$ is $j+1 \Rightarrow \mathsf{EFT}$

4 1 1 4 4 1 1 4 2 1 2 1 9 9 9

No problems

- Correct number of degrees of freedom (the higher derivatives in equations of motion are not a problem)
- The propagator is well defined (no additional poles, no ghosts!)
- Simple to use: multispinor: $S(p) = i \frac{P(a)(a)}{p^2 m^2}$ Weinberg:

$$S(p)^{(2)} = -i \frac{(-p^2)^2 - 2p^2(\vec{p} \cdot \vec{J})(\vec{p} \cdot \vec{J} - p^0) + \frac{2}{3}(\vec{p} \cdot \vec{J}) [(\vec{p} \cdot \vec{J})^2 - |\vec{p}|^2] [\vec{p} \cdot \vec{J} - 2p^0]}{p^2 - m^2}$$

- The multispinor framework is effective field theory that allows fully consistent computations bellow the cut-off scale Λ (just like in any EFT)
- This formulation is the first practical and consistent framework that allows the study of higher spin particles!

Feynman rules

- The free theory is well behaving
- One can add interactions at will. Interaction do not cause trouble, as only physical DOFs are present from the start
- Simplest interaction to study: Higgs portal:

$$\mathcal{L} = rac{\lambda}{\Lambda^{2j}} (H^\dagger H) \psi^{(a)} \psi_{(a)} + h.c.$$

Representations Multispinor Feynman rules Phenomenology Summary OO OO OO OO OO

Any spin dark matter

4 D > 4 B > 4 E > 4 E > E 9 Q Q

Phenomenology

The any spin framework has been used in phenomenological studies of:

- Dark matter: arXiv:2010.02224 [hep-ph] (PRD)
- Collider phenomenology arXiv:2102.13652 [hep-ph] (JHEP)
- $(g-2)_{\mu}$: arXiv:2104.03231 [hep-ph]
- Δ -resonance: arXiv:2106.09031 [hep-ph]

Possibilities:

- Baryogenesis, leptogenesis
- Preheating, reheating
- More collider phenomenology

Summary

- This is the first practical and consistet framework that allows for study of higher spin particles!
- Criado, Koivunen, Raidal, Veermäe, arXiv:2010.02224 [hep-ph] (PRD),

Criado, Djouadi, Koivunen, Raidal, Veermäe, arXiv:2102.13652 [hep-ph] (JHEP),

Criado, Djouadi, Koivunen, Müürsepp, Raidal, Veermäe, arXiv:2104.03231 [hep-ph]

Criado, Djouadi, Koivunen, Müürsepp, Raidal, Veermäe, arXiv:2106.09031 [hep-ph]

Niko Koivunen (KBFI)