▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The $Zb\bar{b}$ couplings in models with extended Higgs sectors

Darius Jurčiukonis⁽¹⁾ and Luís Lavoura⁽²⁾

⁽¹⁾ Vilnius University, Institute of Theoretical Physics and Astronomy *darius.jurciukonis@tfai.vu.lt*

⁽²⁾ Universidade de Lisboa, Instituto Superior Técnico, CFTP balio@cftp.tecnico.ulisboa.pt

June 29, 2021

Numerical results

Observables

The process $Z \rightarrow b\bar{b}$ yields two observable quantities, R_b and A_b .

R_b is the hadronic branching ratio of *Z* to *b* quarks

$$R_b \equiv rac{\Gamma(Z o bar{b})}{\Gamma(Z o ext{hadrons})}.$$

- A_b is the b-quark asymmetry
 - the Z-pole forward-backward asymmetry measured at LEP-1

$$A_{FB}^{(0,b)} = \frac{\sigma\left(e^{-} \rightarrow b_{F}\right) - \sigma\left(e^{-} \rightarrow b_{B}\right)}{\sigma\left(e^{-} \rightarrow b_{F}\right) + \sigma\left(e^{-} \rightarrow b_{B}\right)} = \frac{3}{4}A_{e}A_{b},$$

• the left-right forward-backward asymmetry measured by the SLD collaboration

$$A_{LR}^{FB}(b) = rac{\sigma_{LF} + \sigma_{RB} - \sigma_{LB} - \sigma_{RF}}{\sigma_{LF} + \sigma_{RB} + \sigma_{LB} + \sigma_{RB}} = rac{3}{4}A_b,$$

where $\sigma_{XY} = \sigma \left(e_X^- \to b_Y \right)$; $e_{L,R}^-$ are left and right handed initial-state electrons and $b_{F,B}$ are final-state *b*-quarks moving in the forward and backward directions.

Measurements

• An overall fit of many electroweak observables gives [PDG'2020]

$$\begin{split} R_b^{\rm fit} &= 0.21629 \pm 0.00066 \implies 0.7\sigma \text{ above the SM}, \\ A_b^{\rm fit} &= 0.923 \pm 0.020 \implies 0.6\sigma \text{ below the SM [SLD measurements]}. \end{split}$$

- Extracting A_b from $A_{FB}^{0,b}$ when $A_e = 0.1501 \pm 0.0016$ leads to $A_b = 0.885 \pm 0.0017$, which is 2.9σ below the SM prediction [LEP-1 measurements].
- The combined value $A_b^{\rm average} = 0.901 \pm 0.013$ deviates from the SM value by 2.6σ .
- These discrepancies in A_b could be an evidence of New Physics, but they could also be due to a statistical fluctuation or another experimental effect in one of asymmetries; more precise experiments are needed.

$\underset{\circ\circ\bullet}{\mathsf{Introduction}}$

Theory 000000 Numerical results

Experiments

- A direct measurement of the $Zb\bar{b}$ couplings at the LHC is challenging because of the large backgrounds for the process $Z \rightarrow b\bar{b}$.
- Lepton colliders of the next generation, the **CEPC**, **ILC**, or **FCC-ee** offer great opportunities for further studies of the $Zb\bar{b}$ vertex, because they could collect a large amount of data around the Z^0 pole.
- If its results are SM-like, a future lepton collider can provide strong constraints on models beyond the SM.
- If the $A_{FB}^{0,b}$ discrepancy found at LEP does come from New Physics, then any of the three next-generation e^+e^- colliders will be able to rule out the SM with more than 5σ significance [Gori, *et al.* '2016].

Figure: The preferred regions, given by the global fit of the future measurements [Gori, et al.'2016].

Theory •00000 Numerical results

The couplings

We focus on the Zbb couplings

$$\mathcal{L}_{Zbb} = rac{g}{c_w} Z_\mu \, ar{b} \gamma^\mu \left(g_L P_L + g_R P_R
ight) b.$$

At tree level,

$$g_L^{\mathrm{tree}} = rac{s_w^2}{3} - rac{1}{2}, \quad g_R^{\mathrm{tree}} = rac{s_w^2}{3}.$$

• The Standard Model prediction is

$$g_L^{\rm SM} = -0.420875, \quad g_R^{\rm SM} = 0.077362.$$

In the presence of New Physics, we write

$$\mathbf{g}_{L} = \mathbf{g}_{L}^{\mathrm{SM}} + \delta \mathbf{g}_{L}, \quad \mathbf{g}_{R} = \mathbf{g}_{R}^{\mathrm{SM}} + \delta \mathbf{g}_{R}.$$

• The couplings $g_{L,R}$ are related to A_b

$$A_{b} = \frac{2r_{b}\sqrt{1-4\mu_{b}}}{1-4\mu_{b}+(1+2\mu_{b})r_{b}^{2}},$$

where $r_b = (g_L + g_R)/(g_L - g_R)$ and $\mu_b = \left[m_b \left(m_Z^2 \right) \right]^2 / m_Z^2.$

• The couplings $g_{L,R}$ are related to R_b

$$R_b = \frac{s_b \, c^{\rm QCD} \, c^{\rm QED}}{s_b \, c^{\rm QCD} \, c^{\rm QED} + s_c + s_u + s_s + s_d},$$

where c^{QCD} and c^{QED} are QCD and QED radiative correction factors and

$$s_{b} = (1 - 6\mu_{b}) (g_{L} - g_{R})^{2} + (g_{L} + g_{R})^{2},$$

and $s_{c} + s_{u} + s_{s} + s_{d} = 1.3184.$

Theory 000000 Numerical results

Solutions

• We can solve the above equations for g_L and g_R in terms of the experimentally measured values for R_b and A_b [DJ & Lavoura, arXiv:2103.16635].

solution	ВL	<i>g</i> _R	δg_L	δg_R
1 ^{fit}	-0.420206	0.084172	0.000669	0.006810
2 ^{fit}	-0.419934	-0.082806	0.000941	-0.160168
3 ^{fit}	0.420206	-0.084172	0.841081	-0.161534
4 ^{fit}	0.419934	0.082806	0.840809	0.005444
1 ^{average}	-0.417814	0.095496	0.003061	0.018134
2 ^{average}	-0.417504	-0.094139	0.003371	-0.171501
$3^{\rm average}$	0.417814	-0.095496	0.838688	-0.172858
4 ^{average}	0.417504	0.094139	0.838379	0.016777

- Solutions 3 and 4 have a much too large δg_L and are not really experimentally valid [Choudhury *et al.*'2002] therefore we discard those solutions.
- Solution 1 seems to be preferred over solution 2 because it has much smaller $|\delta g_R|$. Still, in this work we shall also consider solution 2.

6

Theory 000000 Numerical results

The aligned *n*HDM

• The scalar doublets $\Phi_1, \ldots \Phi_n$ in the charged Higgs basis are written

$$\Phi_1 = \begin{pmatrix} S_1^+ \\ \left(v + H + iS_1^0 \right) / \sqrt{2} \end{pmatrix}, \quad \Phi_k = \begin{pmatrix} S_k^+ \\ \left(R_k + iI_k \right) / \sqrt{2} \end{pmatrix} \quad (k = 2, \dots, n),$$

where S_2^+, \ldots, S_n^+ are physical charged scalars with masses $m_{C2} \leq m_{C3} \leq \cdots \leq m_{Cn}$.

- For the sake of simplicity, we assume alignment. This means that $H \equiv S_2^0$ is a physical neutral scalar, with mass $m_2 \approx 125 \text{ GeV}$, that does not mix with the fields R_k and I_k .
- We order the physical neutral scalars S⁰_j through m₃ ≤ m₄ ≤ ... ≤ m_{2n}. Notice that, in principle, one or more of these masses may be lower than m₂.
- To compute the one-loop corrections to the $Zb\bar{b}$ vertex in the *n*HDM, we make the simplifying assumption that only the top and bottom quarks exist and the (t, b) CKM matrix element is 1. The relevant part of the Yukawa Lagrangian is [Fontes, Lavoura *et al.*[']2020]

$$\mathcal{L}_{\text{Yukawa}} = -\left(\begin{array}{cc} \overline{t}_L & \overline{b}_L \end{array}\right) \sum_{k=2}^{n} \left[\frac{f_k}{\sqrt{2}} \left(\begin{array}{c} \sqrt{2} S_k^+ \\ R_k + iI_k \end{array} \right) b_R + \frac{e_k}{\sqrt{2}} \left(\begin{array}{c} R_k - iI_k \\ -\sqrt{2} S_k^- \end{array} \right) t_R \right] + \text{H.c.},$$

where the e_k and f_k are the Yukawa coupling constants.

Numerical results

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The scalar contributions

In the *n*HDM at the one-loop level, both δg_L and δg_R are the sum of a two contributions

$$\delta g_L = \delta g_L^c + \delta g_L^n, \quad \delta g_R = \delta g_R^c + \delta g_R^n.$$

 The charged-scalar contribution (having charged scalars and top quarks in the internal lines of the loop) [Haber & Logan'2000]

where the functions f_L and f_R are defined through various PV functions.

Theory 000000 Numerical results

The scalar contributions

• The neutral-scalar contribution (with neutral scalars and bottom quarks in the internal lines of the loop) [Fontes, Lavoura *et al.* 2020; DJ & Lavoura 2021]

$$\begin{split} \delta g_L^n &= \quad \frac{1}{16\pi^2} \sum_{j=3}^{2n-1} \sum_{j'=j+1}^{2n} \mathcal{A}_{jj'} \ \mathrm{Im}\left[\left(\mathcal{V}^\dagger \mathcal{F}^* \right)_j \left(\mathcal{V}^T \mathcal{F} \right)_{j'} \right] h_L \left(m_j^2, \ m_{j'}^2 \right), \\ \delta g_R^n &= \quad \frac{1}{16\pi^2} \sum_{j=3}^{2n-1} \sum_{j'=j+1}^{2n} \mathcal{A}_{jj'} \ \mathrm{Im}\left[\left(\mathcal{V}^\dagger \mathcal{F}^* \right)_j \left(\mathcal{V}^T \mathcal{F} \right)_{j'} \right] h_R \left(m_j^2, \ m_{j'}^2 \right), \end{split}$$

where $\mathcal{A} := \text{Im}(\mathcal{V}^{\dagger}\mathcal{V}) = \mathcal{R}^{T}\mathcal{I} - \mathcal{I}^{T}\mathcal{R}$ is the real antisymmetric matrix, $\mathcal{F}_{k} = \mathbf{f}_{k}$ for k = 2, ..., n, and the functions h_{L} and h_{R} are defined through various PV functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The aligned 2HDM and the aligned 3HDM

- The aligned 2HDM. New scalars: m_{C2} and $m_{3,4}$. Restrictions to the scalar potential: because of alignment, $\lambda_1 = \frac{m_2^2}{v^2}$, $\lambda_6 = 0$ and for simplicity $\lambda_{2,7} = 0$.
- The aligned 3HDM. New scalars: $m_{C2,C3}$ and $m_{3,4,5,6}$. Restrictions to the scalar potential: we discard from the quartic part of the potential all the terms that either do not contain Φ_1 or are linear in Φ_1 .
- Theoretical and experimental constraints
 - unitarity requirements,
 - bounded-from-below requirements,
 - vacuum stability conditions,
 - phenomenological constraint: $T = 0.03 \pm 0.12$ and $S = -0.01 \pm 0.10$ [PDG'2020].

The aligned 2HDM, solution 1

• The confrontation between experiment and the computed values of δg_L and δg_R

• δg_R^n versus δg_R^c in the aligned 2HDM ($m_{C2} > 150$ GeV for all panels)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The aligned 3HDM, solution 1

• The confrontation between experiment and the computed values of δg_L and δg_R

- Only when one allows both for a laxer S- and T-oblique parameters constraints and for a very low neutral-scalar mass $m_3 \lesssim 60 \,\text{GeV}$ are the central values of both solutions 1^{fit} and 1^{average} attainable.
- In the 3HDM, just as in the 2HDM, the better agreement occurs through an extensive finetuning where $\delta g_L^n \approx -\delta g_L^c$ and $\delta g_R^n \approx -\delta g_R^c$.

Theory 000000 Numerical results

Solution 2

• The confrontation between experiment and the computed values of δg_L and δg_R

- All points obey S- and T-oblique parameters 1σ constraints
- One can attain the best-fit points both of solution 2^{fit} and of solution 2^{average}
- In the 3HDM the lightest neutral scalar m_3 may be as heavy as 620 GeV, while in the 2HDM $m_3 < 420$ GeV

Numerical results

Solution 2^{average}

• The 2HDM case: points fit solution 2^{average} at the 1σ level, and have $m_3 > 100 \text{ GeV}$.

• The 3HDM case: points fit solution 2^{average} at the 1σ level, and have $m_3 > 100 \text{ GeV}$.

Conclusions

- The SM has a slight problem in fitting the $Zb\bar{b}$ vertex, since it produces a g_R smaller than what is needed to reproduce the measured A_b .
- The *n*HDM can solve that but with very light new scalars and too-large oblique parameters *S* and *T*.
- There exist an alternative fit of the $Zb\bar{b}$ vertex, wherein g_R has the opposite sign from the one predicted by the SM but is easy to obtain in a *n*HDM.
- This solution, though, also works only if the new scalars are relatively light and if at least one of the Yukawa couplings is quite large.

Numerical results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The End