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Observables

The process Z → bb̄ yields two observable quantities, Rb and Ab.

• Rb is the hadronic branching ratio of Z to b quarks

Rb ≡
Γ(Z → bb̄)

Γ(Z → hadrons)
.

• Ab is the b-quark asymmetry

• the Z -pole forward–backward asymmetry measured at LEP-1

A
(0,b)
FB =

σ
(
e− → bF

)
− σ

(
e− → bB

)
σ (e− → bF ) + σ (e− → bB)

=
3

4
AeAb,

• the left–right forward–backward asymmetry measured by the SLD collaboration

AFB
LR (b) =

σLF + σRB − σLB − σRF

σLF + σRB + σLB + σRB
=

3

4
Ab,

where σXY = σ
(
e−X → bY

)
; e−L,R are left and right handed initial–state electrons and

bF ,B are final–state b-quarks moving in the forward and backward directions.
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Measurements

• An overall fit of many electroweak observables gives [PDG′2020]

Rfit
b = 0.21629± 0.00066 =⇒ 0.7σ above the SM,

Afit
b = 0.923± 0.020 =⇒ 0.6σ below the SM [SLD measurements].

• Extracting Ab from A0,b
FB when Ae = 0.1501± 0.0016 leads to

Ab = 0.885± 0.0017, which is 2.9σ below the SM prediction [LEP-1

measurements].

• The combined value Aaverage
b = 0.901± 0.013 deviates from the SM value by

2.6σ.

• These discrepancies in Ab could be an evidence of New Physics, but they
could also be due to a statistical fluctuation or another experimental effect in
one of asymmetries; more precise experiments are needed.
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Experiments

• A direct measurement of the Zbb̄ couplings at the
LHC is challenging because of the large backgrounds
for the process Z → bb̄.

• Lepton colliders of the next generation, the CEPC,
ILC, or FCC-ee offer great opportunities for further
studies of the Zbb̄ vertex, because they could collect
a large amount of data around the Z 0 pole.

• If its results are SM-like, a future lepton collider can
provide strong constraints on models beyond the SM.

• If the A0,b
FB discrepancy found at LEP does come from

New Physics, then any of the three next-generation
e+e− colliders will be able to rule out the SM with
more than 5σ significance [Gori,et al.′2016].
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Figure 3: The preferred regions in the (δgLb, δgRb) plane, given by the global fit of the
future measurements at CEPC (in cyan), CEPC+ (in blue), ILC (in red) and FCC-ee
(in black). The solid and dotted purple contours correspond to the 68% and 95% CL
constraints from the current measurements. The two panels correspond to Scenario I
and Scenario II presented in the text, and each plot shows the 99.9999% CL constraints
from different colliders with dashed contours. The green dot is the SM prediction (δgLb =
δgRb = 0).

effective Lagrangians. At dimension 6, the only operators that modifies directly the Zbb̄

couplings are (see e.g. [17,21])

OHb = i(H†
↔
DµH)(b̄Rγ

µbR) , (4.1)

OsHQ = i(H†
↔
DµH)(Q̄γµQ) , (4.2)

OtHQ = i(H†σa
↔
DµH)(Q̄γµσaQ) . (4.3)

After electroweak symmetry breaking, these operators lead to a shift in the Zbb̄ couplings:

δgLb = −(asHQ + atHQ)v2

2
, δgRb = −aHbv

2

2
, (4.4)

where aHb, a
s
HQ, a

t
HQ are the coefficients of the OHb, OsHQ, OtHQ operators, respectively

and v is the vacuum expectation value of the Higgs (v = 246 GeV). In Table 7, we present

the constraints on these operators at the several future e+e− machines, assuming that

asHQ = atHQ = aHb = 1/Λ2. Scales as large as (20− 30) TeV can be probed by the future

measurement of the Zbb̄ couplings.

Next, we pass to the analysis of specific NP frameworks that can generate some of the

operators forementioned, including two Higgs doublet models, composite Higgs models

16

Figure: The preferred regions,
given by the global fit of the
future measurements [Gori,et
al.′2016].
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The couplings

• We focus on the Zbb̄ couplings

LZbb =
g

cw
Zµ b̄γ

µ (gLPL + gRPR) b.

• At tree level,

g tree
L =

s2
w

3
− 1

2
, g tree

R =
s2
w

3
.

• The Standard Model prediction is

gSM
L = −0.420875, gSM

R = 0.077362.

• In the presence of New Physics, we
write

gL = gSM
L + δgL, gR = gSM

R + δgR .

• The couplings gL,R are related to Ab

Ab =
2rb
√

1− 4µb

1− 4µb + (1 + 2µb) r 2
b

,

where rb = (gL + gR)/(gL − gR) and

µb =
[
mb

(
m2

Z

)]2
/

m2
Z .

• The couplings gL,R are related to Rb

Rb =
sb c

QCD cQED

sb cQCD cQED + sc + su + ss + sd
,

where cQCD and cQED are QCD and
QED radiative correction factors and

sb = (1− 6µb) (gL − gR)2 + (gL + gR)2 ,

and sc + su + ss + sd = 1.3184.
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Solutions

• We can solve the above equations for gL and gR in terms of the experimentally
measured values for Rb and Ab [DJ & Lavoura, arXiv:2103.16635].

solution gL gR δgL δgR

1fit −0.420206 0.084172 0.000669 0.006810
2fit −0.419934 −0.082806 0.000941 −0.160168
3fit 0.420206 −0.084172 0.841081 −0.161534
4fit 0.419934 0.082806 0.840809 0.005444

1average −0.417814 0.095496 0.003061 0.018134
2average −0.417504 −0.094139 0.003371 −0.171501
3average 0.417814 −0.095496 0.838688 −0.172858
4average 0.417504 0.094139 0.838379 0.016777

• Solutions 3 and 4 have a much too large δgL and are not really experimentally
valid [Choudhury et al.′2002] therefore we discard those solutions.

• Solution 1 seems to be preferred over solution 2 because it has much smaller
|δgR |. Still, in this work we shall also consider solution 2.
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The aligned nHDM
• The scalar doublets Φ1, . . .Φn in the charged Higgs basis are written

Φ1 =

(
S+

1(
v + H + iS0

1

)/√
2

)
, Φk =

(
S+
k

(Rk + iIk)
/√

2

)
(k = 2, . . . , n),

where S+
2 , . . . , S

+
n are physical charged scalars with masses mC2 ≤ mC3 ≤ · · · ≤ mCn.

• For the sake of simplicity, we assume alignment. This means that H ≡ S0
2 is a

physical neutral scalar, with mass m2 ≈ 125 GeV, that does not mix with the fields
Rk and Ik .

• We order the physical neutral scalars S0
j through m3 ≤ m4 ≤ . . . ≤ m2n. Notice that,

in principle, one or more of these masses may be lower than m2.

• To compute the one-loop corrections to the Zbb̄ vertex in the nHDM, we make the
simplifying assumption that only the top and bottom quarks exist and the (t, b)
CKM matrix element is 1. The relevant part of the Yukawa Lagrangian is [Fontes,

Lavoura et al.′2020]

LYukawa = −
(

tL bL

) n∑
k=2

[
fk√

2

( √
2 S+

k

Rk + iIk

)
bR +

ek√
2

(
Rk − iIk

−
√

2S−k

)
tR

]
+ H.c.,

where the ek and fk are the Yukawa coupling constants.
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The scalar contributions
In the nHDM at the one-loop level, both δgL and δgR are the sum of a two
contributions

δgL = δg c
L + δgn

L , δgR = δg c
R + δgn

R .

• The charged-scalar contribution (having charged scalars and top quarks in the internal

lines of the loop) [Haber & Logan′2000]
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1

δg c
L =

1

16π2

n∑
k=2

|ek |2 fL
(
m2

Ck

)
, δg c

R =
1

16π2

n∑
k=2

|fk |2 fR
(
m2

Ck

)
,

where the functions fL and fR are defined through various PV functions.
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The scalar contributions

• The neutral-scalar contribution (with neutral scalars and bottom quarks in the internal

lines of the loop) [Fontes, Lavoura et al.′2020; DJ & Lavoura′2021]
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1

δgn
L =

1

16π2

2n−1∑
j=3

2n∑
j′=j+1

Ajj′ Im

[(
V†F∗

)
j

(
VTF

)
j′

]
hL

(
m2

j , m
2
j′
)
,

δgn
R =

1

16π2

2n−1∑
j=3

2n∑
j′=j+1

Ajj′ Im

[(
V†F∗

)
j

(
VTF

)
j′

]
hR

(
m2

j , m
2
j′
)
,

where A := Im
(
V†V

)
= RTI − ITR is the real antisymmetric matrix, Fk = fk for

k = 2, . . . , n, and the functions hL and hR are defined through various PV functions.
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The aligned 2HDM and the aligned 3HDM

• The aligned 2HDM. New scalars: mC2 and m3,4. Restrictions to the scalar

potential: because of alignment, λ1 =
m2

2
v2 , λ6 = 0 and for simplicity λ2,7 = 0.

• The aligned 3HDM. New scalars: mC2,C3 and m3,4,5,6. Restrictions to the scalar

potential: we discard from the quartic part of the potential all the terms that either

do not contain Φ1 or are linear in Φ1.

• Theoretical and experimental constraints
• unitarity requirements,
• bounded-from-below requirements,
• vacuum stability conditions,
• phenomenological constraint: T = 0.03± 0.12 and S = −0.01± 0.10

[PDG′2020].
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The aligned 2HDM, solution 1
• The confrontation between experiment and the computed values of δgL and δgR

• δgn
R versus δg c

R in the aligned 2HDM (mC2 > 150 GeV for all panels)
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The aligned 3HDM, solution 1

• The confrontation between experiment and the computed values of δgL and δgR

• Only when one allows both for a laxer S- and T -oblique parameters constraints and

for a very low neutral-scalar mass m3 . 60 GeV are the central values of both

solutions 1fit and 1average attainable.

• In the 3HDM, just as in the 2HDM, the better agreement occurs through an

extensive finetuning where δgn
L ≈ −δg c

L and δgn
R ≈ −δg c

R .
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Solution 2

• The confrontation between experiment and the computed values of δgL and δgR

• All points obey S- and T -oblique parameters 1σ constraints

• One can attain the best-fit points both of solution 2fit and of solution 2average

• In the 3HDM the lightest neutral scalar m3 may be as heavy as 620 GeV, while in the

2HDM m3 < 420 GeV
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Solution 2average

• The 2HDM case: points fit solution 2average at the 1σ level, and have m3 > 100 GeV.

• The 3HDM case: points fit solution 2average at the 1σ level, and have m3 > 100 GeV.
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Conclusions

• The SM has a slight problem in fitting the Zbb̄ vertex, since it produces a gR
smaller than what is needed to reproduce the measured Ab.

• The nHDM can solve that but with very light new scalars and too-large
oblique parameters S and T .

• There exist an alternative fit of the Zbb̄ vertex, wherein gR has the opposite
sign from the one predicted by the SM but is easy to obtain in a nHDM.

• This solution, though, also works only if the new scalars are relatively light
and if at least one of the Yukawa couplings is quite large.
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The End
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