
PyCoral,
Python interface to CORAL

By
S.S.Tomar
RRCAT, Indore, India

What is it?

PyCoral is an extension module of python,
developed using the python/C API.
It is a python interface to the CORAL
package.
PyCoral module implements python
wrappers around a subset of CORAL
specific C++ classes.
It is one of the project in the framework of
collaboration between RRCAT & CERN-IT-
PSS/ LCG.

Why to use it?

Write simple python scripts instead of
complex C++ programs, for persistent
storage/retrieval of your data in
relational domain (Oracle, MySql,
SQLite, Frontier)

Whom is it aimed at?

“Command line administrators” for building
CORAL API based tools using python
scripts. For eg: the “Copy database tool” of
the 3D project.

Developers of Other tools of the 3D
(Distributed Deployment of Databases)
project.

How to use it?

Start Python Interpreter.
Example 1:
import coral
list1 = coral.AttributeList()

OR
from coral import *
list1 = AttributeList()

Examples

Example 2:
import cPickle
import coral
w = coral.AttributeList()
w.extend("h","blob")
li1 = []
li2 = []
for j in range(1,500):
li1.append(j)

cPickle.dump(li1,h,1)
li2 = cPickle.load(w[0].data())

OR
li2 = cPickle.loads(w[0].data().readline())

Examples

Example 3:
cursor = query.execute()
while (cursor.next()): // C++ style
currentRow = cursor.currentRow()
print str(currentRow)

OR
for currentRow in cursor: // Python style
print str(currentRow)

OR
for currentRow in query.execute():
print str(currentRow)

Examples

Example 4:
cmp(list1,list2)
print str(attList1)
attrList[0].setData(None)
attrList['X'].setData(None)
print attrList[0].data()
for attribute in attrList:
print attribute.data()

Implementation Details

Choice of Python/C API
Selection of the subset of CORAL classes
Factoring of Code
Exposed and Unexposed classes
Exception Handling
Parent Child relationship
BLOB implementation
“Attribute in AttributeList” implementation
Inheritance implementation
Testing techniques

Choice of Python/C API

Boost::Python considered.
Advantages of Python/C API

No external dependency except python
client libraries.
Python style and semantics is easier to
implement.
Although more coding but straightforward
one, mostly related to struct initializations
No change required in the underlying
C++ code.

Python style & Semantics

For Templated methods in CORAL,
Type checking is performed in the
wrapper methods, which preserves the
loosely-typed semantics of Python.
Blob, implemented using the buffer
interface feature in python.
Pickling support for writing and reading
python objects into BLOB.

…(Contd)

AttributeList & Cursor with iterator
protocol:
for attribute in attributeList:
print attribute.data()
Comparison of two Attributes or
AttributeLists using “cmp” command.
String representation of Attribute or
AttributeList using “str” command.

Selection of a subset of CORAL
classes

All CoralBase/RelationalAccess
except:

Exception classes.
Developer level interfaces
(IRelationalService, ISession,
IAuthenticationService, ILookupService
etc…)

…Contd

No 1-1 mapping of methods, to
maintain python style (for eg:
templated methods, size &
toOutputStream not implemented as
is)

Factoring of Code

Based on code classification
Module Naming and Initialization part of the code
Various structure definitions like, class related
PyTypeObject structures, normal method structures,
mapping methods & buffer structure part of code.
Init and dealloc methods of the classes.
Various other method related code as required by
specific classes in the interfaces.

Exposed & Unexposed Classes
Exposed classes, header files in PyCoral subdir.
Unexposed classes & other code in src subdir.

Exposed & Unexposed
classes

Exposed ones can be used by other
extension modules,
Can be instantiated by the python
programmer,
Are AttributeList, Date, Blob, TimeStamp,
TableDescription, Context,
ConnectionService & Exception.
Unexposed class objects can only be
created using some functions in the
exposed classes & already created
unexposed class objects.

Exception Handling

All C++ exceptions generated by
CORAL classes and methods are
caught & thrown in the methods of the
PyCoral and can be caught further in
the python code.
Wrappers not created for Exception
classes and its hierarchy in CORAL
package.

Parent Child relationship

Must to implement, because of exposed &
unexposed class implementation.
Helps in keeping track of the chain of
objects created using the methods of the
exposed classes.
Tracking required for performing “dealloc” of
objects in reverse order when the object that
created it goes out of scope.

BLOB implementation

By using the buffer protocol, which
allows its reading and writing as a
buffer without additional memory
requirement.

Pickling support, for reading and
writing python objects into and from
BLOB.

“Attribute in AttributeList”
Implementation

Python style for-in loop.
Iterator protocol implementation.

Iter() method for AttributeList class.
Iter() & next() for AttributeListIterator class.

Allows following two forms of iterations:
It = iter(AttList1)

For i in it:
print i.data()

For attribute in AttList1:
print attribute.data()

Inheritance implementation

Single Inheritance
IQuery & IQueryDefinition
IBulkOperationWithQuery & IBulkOperation
IViewFactory & IQueryDefinition

Multiple Inheritance
TableDescription, ITableDescription,
ISchemaEditor classes

…Contd

Whenever a class inheriting from a base
class is “init” ed, all the classes (base
classes + inheriting) are initialized.
Whenever the inheriting class object goes
out of scope its “dealloc” method, DECREFs
all the base classes.
The parent of the base classes have to be
Py_NONE, to take care of the parent child
implementation, which exists in all the
classes.

Testing Techniques

RefCounting
Requires Python recompilation with DEBUG
option.
Carried out for all unit tests and integration test
code.

Valgrind memcheck
Only carried out for all the CoralBase classes
and methods.
Not possible for RelationalAccess because of
presence of SEAL code.

Present Status & Future

The first release of PyCoral was made
along with CORAL release 1.6.3.
Subsequent releases of CORAL will all
have PyCoral release also.

Conclusion

Python/C API technique, provides
an easy way to pythonize C++
classes, allowing both the python
style and semantics, to be
incorporated, without changing the
underlying C++ code.

Thank You all….

