
Plans for Migrating SEAL
Functionality

P. Mato / CERN

Current Status
Proposed actions
REFLEX/PluginService functionality

12/13/2006 Plans for Migrating SEAL Functionality 2

Remaining SEAL Functionality

The functionality that is left from the SEAL project is the
following:
– Foundation functionality implemented by the packages: SealBase,

SealIOTools, SealZip and SealUtil
– PluginManager and related utility programs (SealPluginDump, etc.)
– Component Model implemented by the packages: SealKernel and

SealServices.
– MathLibs, which still includes FML (fit and minimization) package

12/13/2006 Plans for Migrating SEAL Functionality 3

Usages Assumptions
Foundation
– These packages are mainly used by CMS directly, and also at some

level by the Persistency Framework projects (CORAL, COOL,
POOL). Indirectly are also used by LHCb and ATLAS.

Plugin Manager
– The SEAL Plugin manager is used by the Persistency Framework

project and CMS. The new CMS framework CMSSW relies heavily
on it.

Component Model
– The two packages of the component model are used exclusively by

the Persistency Framework projects. No use in CMS has been
reported. Recently, some modifications had to be done to better
support multi-threading.

12/13/2006 Plans for Migrating SEAL Functionality 4

Proposed Actions
The subset component model functionality from SealKernel
and SealServices which is used by the persistency
framework will be moved to the CORAL project
The dependencies of these packages to SealBase will be
eliminated.
The moved component model to CORAL will be for internal
use of the Persistency Framework packages.
Two options for the replacement of the Plugin Manager in
persistency framework packages
a) Re-implement the ComponentLoader with a set of "hardwired"

relations between Persistency components and the name of the
library that needs to be loaded and the factories to be located

b) The new class (PluginService) available already in ROOT/Reflex will
be used to provide plugin management functionality

12/13/2006 Plans for Migrating SEAL Functionality 5

Proposed Actions (2)
The SEAL plugin manager will only be used by CMS and
could be moved into their code base.
Move the remaining SEAL packages: SealBase,
SealIOTools and SealZip or portions of them to the CMS
code base.

The time scale for CORAL changes could be by the end-
January for a development release and by end-February
for a production release
CMS will have to decide for their actions and time scale.
Meanwhile SEAL will continue to be released.
AF endorsed the proposal

12/13/2006 Plans for Migrating SEAL Functionality 6

Reflex Plugin Service
This package has been developed to enhance and simply
some aspects of the GAUDI framework
The main goals have been
– Remove the need for the property “ApplicationMgr.Dlls”.

Component libraries could be loaded on demand
– Simplification of the code. Replace existing factories (AlgFactory,

ToolFactory, etc.) with a single method, so many classes can be
removed from Gaudi

– Compatibility with other plugins and dictionary systems since they
are based also on roopmap files

– Dependent exclusively on the Reflex package, such that can be
added into ROOT/Reflex package

– Possible replacement for the SEAL plugin manager that could be of
interest for CORAL, POOL, COOL, etc.

12/13/2006 Plans for Migrating SEAL Functionality 7

PLUGINSVC_FACTORY(MyClass,ICommon*(int,ISvc*));
/* implementation */

Using Plugin Service
Coding the plugin/component
– No predefined model
– Declaring factory with

signature

Library.MyClass: MyLibrary.so
Library.AnotherClass: MyLibrary.so

MyClass.cpp

class MyClass : public ICommon {
MyClass(int, ISvc*);
...

}; MyClass.h

Creating the rootmap file
– Text file listing all plugins and

the associated dynamic library
– The build system creates it with

genmap
Instantiating the plugin
– Library loaded if needed
– Strong argument

type checking

rootmap

...
ISvc* svc = ...
ICommon* myc;
myc = PluginSvc::create<ICommon*>(“MyClass”,10, svc);
if (myc) {

myc->doSomething();
} Program.cpp

12/13/2006 Plans for Migrating SEAL Functionality 8

New Plugin Service

Standalone package with a single dependency to Reflex
Implementation:

l w c
112 411 3333 PluginSvc/src/lib/FactoryMap.cxx
163 664 5727 PluginSvc/src/lib/PluginSvc.cxx
108 389 3071 PluginSvc/src/lib/SharedLibrary.cxx

112 318 2472 PluginSvc/PluginSvc/dirmanip.h
44 151 1252 PluginSvc/PluginSvc/FactoryMap.h
200 980 9724 PluginSvc/PluginSvc/PluginSvc.h
20 89 653 PluginSvc/PluginSvc/SharedLibrary.h

12/13/2006 Plans for Migrating SEAL Functionality 9

Example: integration in GAUDI
Redefinition of a number of macros

#define DECLARE_ALGORITHM_FACTORY(x) \
PLUGINSVC_FACTORY(x,IAlgorithm*(std::string, ISvcLocator*))

#define DECLARE_SERVICE_FACTORY(x) \
PLUGINSVC_FACTORY(x,IService*(std::string, ISvcLocator*))

�
#define DECLARE_TOOL_FACTORY(x) \

PLUGINSVC_FACTORY(x,IAlgTool*(std::string, std::string, ISvcLocator*))

#define DECLARE_CONVERTER_FACTORY(x) \
� PLUGINSVC_FACTORY_WITH_ID(x, ConverterID(x::storageType(),x::classID()),\

IConverter*(ISvcLocator*))
��

