
A Practical Introduction to Quantum
Computing: From Qubits to Quantum

Machine Learning and Beyond

Elı́as F. Combarro
combarro@gmail.com

CERN openlab (Geneva, Switzerland) - University of Oviedo (Oviedo, Spain)

CERN - November/December 2020

mailto:combarro@gmail.com


Part I

Introduction: quantum computing...
the end of the world as we know it?
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I, for one, welcome our new quantum overlords

Image credits: sciencenews.org

3 / 64



Philosophy of the course

Image credits: Modified from an Instagram image by Bob MacGuffie
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Tools and resources
• Jupyter Notebooks

• Web application to create and execute notebooks that
include code, images, text and formulas

• They can be used locally (Anaconda) or in the cloud
(mybinder.org, Google Colab...)

• IBM Quantum Experience
• Free online access to quantum simulators (up to 32 qubits)

and actual quantum computers (1, 5 and 15 qubits) with
different topologies

• Programmable with a visual interface and via different
languages (python, qasm, Jupyter Notebooks)

• Launched in May 2016
• https://quantum-computing.ibm.com/
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Tools and resources (2)

• Quirk
• Online simulator (up to 16 qubits)
• Lots of different gates and visualization options
• http://algassert.com/quirk

• D-Wave Leap
• Access to D-Wave quantum computers
• Ocean: python library for quantum annealing
• Problem specific (QUBO, Ising model...)
• https://www.dwavesys.com/take-leap
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The shape of things to come

Image credits: Created with wordclouds.com
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What is quantum computing?

Quantum computing
Quantum computing is a computing paradigm that exploits
quantum mechanical properties (superposition, entanglement,
interference...) of matter in order to do calculations

Image credits: Erik Lucero
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Models of quantum computing
• There are several models of quantum computing (they’re

all equivalent)
• Quantum Turing machines
• Quantum circuits
• Measurement based quantum computing (MBQC)
• Adiabatic quantum computing
• Topological quantum computing

• Regarding their computational capabilities, they are
equivalent to classical models (Turing machines)

Image credits: Getty Images
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Quantum and classical computational complexity

Image credits: wikipedia.org
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What technologies are used to build quantum
computers?

Image credits: Graphic by C. Bickle/Science data by Gabriel Popkin
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What is a quantum computer like?

Image credits: IBM

The Sounds of IBM: IBM Q
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Programming a quantum computer
• Different frameworks and programming languages:

• qasm
• Qiskit (IBM)
• Cirq (Google)
• Forest/pyqil (Rigetti)
• Q# (Microsoft)
• Ocean (D-Wave)
• ...

• Most of them for quantum circuit specification

Image credits: IBM

13 / 64



What are the elements of a quantum circuit?

• Every computation has three elements: data, operations
and results
• In quantum circuits:

• Data = qubits
• Operations = quantum gates (unitary transformations)
• Results = measurements

Image credits: Adobe Stock
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Part II

One-qubit systems: one qubit to
rule them all
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What is a qubit?
• A classical bit can take two different values (0 or 1). It is

discrete.
• A qubit can “take” infinitely many different values. It is

continuous.
• Qubits live in a Hilbert vector space with a basis of two

elements that we denote |0〉 y |1〉.
• A generic qubit is in a superposition

|ψ〉 = α |0〉+ β |1〉
where α and β are complex numbers such that

|α|2 + |β|2 = 1

Image credits: https://prateekvjoshi.com/ 16 / 64



Measuring a qubit
• The way to know the value of a qubit is to perform a

measurement. However
• The result of the measurement is random
• When we measure, we only obtain one (classical) bit of

information
• If we measure the state |ψ〉 = α |0〉+ β |1〉 we get 0 with

probability |α|2 and 1 with probability |β|2.
• Moreover, the new state after the measurement will be |0〉

or |1〉 depending of the result we have obtained
(wavefunction colapse)
• We cannot perform several independent measurements of
|ψ〉 because we cannot copy the state (no-cloning
theorem)
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What are quantum gates?

• Quantum mechanics tells us that the evolution of an
isolated state is given by the Schrödinger equation

• In the case of quantum circuits, this implies that the
operations that can be carried out are given by unitary
matrices. That is, matrices U of complex numbers verifying

UU† = U†U = I

where U† is the conjugate transpose of U.
• Each such matrix is a possible quantum gate in a quantum

circuit
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Reversible computation
• As a consequence, all the operations have an inverse:

reversible computing
• Every gate has the same number of inputs and outputs
• We cannot directly implement some classical gates such

as or , and , nand , xor ...
• But we can simulate any classical computation with small

overhead
• Theoretically, we could compute without wasting energy

(Landauer’s principle, 1961)

Image credits: wikipedia.org 19 / 64



One-qubit gates

• When we have just one qubit |ψ〉 = α |0〉+ β |1〉, we usually

represent it as a column vector
(
α
β

)
• Then, a one-qubit gate can be identified with a matrix

U =

(
a b
c d

)
that satisfies(

a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
where a,b, c,d are the conjugates of complex numbers
a,b, c,d .
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Action of a one-qubit gate

• A state |ψ〉 = α |0〉+ β |1〉 is transformed into(
a b
c d

)(
α
β

)
=

(
aα+ bβ
cα+ dβ

)
that is, into the state |ψ〉 = (aα+ bβ) |0〉+ (cα+ dβ) |1〉
• Since U is unitary, it holds that

|(aα+ bβ)|2 + |(cα+ dβ)|2 = 1
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The X or NOT gate

• The X gate is defined by the (unitary) matrix(
0 1
1 0

)
• Its action (in quantum circuit notation) is

|0〉 X |1〉

|1〉 X |0〉

that is, it acts like the classical NOT gate
• On a general qubit its action is

α |0〉+ β |1〉 X β |0〉+ α |1〉
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The Z gate

• The Z gate is defined by the (unitary) matrix(
1 0
0 −1

)
• Its action is

|0〉 Z |0〉

|1〉 Z − |1〉
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The H or Hadamard gate

• The H or Hadamard gate is defined by the (unitary) matrix

1√
2

(
1 1
1 −1

)
• Its action is

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

• We usually denote

|+〉 := |0〉+ |1〉√
2

and
|−〉 := |0〉 − |1〉√

2
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Other important gates

• Y gate (
0 −i
i 0

)
• S gate (

1 0
0 ei π2

)
• T gate (

1 0
0 ei π4

)
• The gates X , Y and Z are also called, together with the

identity, the Pauli gates. An alternative notation is σX , σY ,
σZ .
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The Bloch sphere

• A common way of representing the state of a qubit is by
means of a point in the surface of the Bloch sphere
• If |ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1 we can find angles
γ, δ, θ such that

α = eiγ cos
θ

2

β = eiδ sin
θ

2
• Since an overall phase is physically irrelevant, we can

rewrite
|ψ〉 = cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
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The Bloch sphere (2)
• From |ψ〉 = cos θ2 |0〉+ eiϕ sin θ

2 |1〉 we can obtain spherical
coordinates for a point in R3

(sin θ cosϕ, sin θ sinϕ, cos θ)

Image credits: wikipedia.org
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Rotation gates

• We can define the following rotation gates

RX (θ) = e−i θ2 X = cos
θ

2
I − i sin

θ

2
X =

(
cos θ2 −i sin θ

2
−i sin θ

2 cos θ2

)

RY (θ) = e−i θ2 Y = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ2 − sin θ

2
sin θ

2 cos θ2

)

RZ (θ) = e−i θ2 Z = cos
θ

2
I−i sin

θ

2
Z =

(
e−i θ2 0

0 ei θ2

)
≡
(

1 0
0 eiθ

)
• Notice that RX (π) ≡ X , RY (π) ≡ Y , RZ (π) ≡ Z ,

RZ (
π
2 ) ≡ S, RZ (

π
4 ) ≡ T
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Using rotation gates to generate one-qubit gates

• For any one-qubit gate U there exist a unit vector
r = (rx , ry , rz) and an angle θ such that

U ≡ e−i θ2 r ·σ = cos
θ

2
I − i sin

θ

2
(rxX + ryY + rzZ )

• For instance, choosing θ = π and r = ( 1√
2
,0, 1√

2
) we can

see that
H ≡ e−i θ2 r ·σ = −i

1√
2
(X + Z )

• Additionally, it can also be proved that there exist angles α,
β and γ such that

U ≡ RZ (α)RY (β)RZ (γ)
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Inner product, Dirac’s notation and Bloch sphere

• The inner product of two states |ψ1〉 = α1 |0〉+ β1 |1〉 and
|ψ2〉 = α2 |0〉+ β2 |1〉 is given by

〈ψ1|ψ2〉 =
(
α1 β1

)(α2
β2

)
= α1α2 + β1β2

• Notice that 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0
• This allows us to compute

〈ψ1|ψ2〉 =
(
α1 〈0|+ β1 〈1|

)
(α2 |0〉+ β2 |1〉)

= α1α2 〈0|0〉+ α1β2 〈0|1〉+ β1α2 〈1|0〉+ β1β2 〈1|1〉
= α1α2 + β1β2

• Orthogonal states are antipodal on the Bloch sphere
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Hello, quantum world!

• Our very first quantum circuit!

|0〉 H

• After applying the H gate the qubit state is

|0〉+ |1〉√
2

• When we measure, we obtain 0 or 1, each with 50%
probability: we have a circuit that generates perfectly
uniform random bits!
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Part III

The BB84 protocol: Alice and Bob’s
hotline
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One-time pad: a Catch-22 situation

• Alice wants to send Bob a message m without Eve being
able to learn anything about its content
• This can be achieved if Alice and Bob share in advance a

string k of random bits:
• Alice computes x = m ⊕ k and sends x to Bob
• Eve cannot learn anything from x

(Pr(M = m|X = x) = Pr(M = m))
• But Bob can recover m by computing x ⊕ k

• The main problem is that k has to be as long as m and
cannot be reused so... how to agree on k?

Image credits: nullprogram.com
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The problem of key distribution
• Alice and Bob may share several keys for later use when

they are together
• But... what if they cannot meet each other?
• There exist key distribution methods like the Diffie-Hellman

protocol but...
• They are not unconditionally secure (they usually rely on

hardness assumptions)
• In fact, DH can be broken with quantum computers!
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BB84: Alice’s part

• In 1984, Charles Bennett and Gilles Brassard proposed
the first protocol for quantum key distribution (QKD)
• Alice generates a (private) string of random bits
• She could even do this with a quantum computer (H gate +

measure)
• Then, for each bit she randomly chooses if she encodes it

in the {|0〉 , |1〉} basis or in the {|+〉 , |−〉} basis (remember
that |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉))

• She can easily do this by using H and X gates (recall that
H |0〉 = |+〉 ,H |1〉 = |−〉 ,X |0〉 = |1〉 ,X |1〉 = |0〉)
• Alice sends the resulting qubits to Bob (through a quantum

but not necessarily secure channel)
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BB84: Bob’s part

• Each time Bob receives a qubit, he randomly decides
whether he will measure it in the {|0〉 , |1〉} basis or in the
{|+〉 , |−〉} basis
• He does this by applying (or not) the H gate before

measuring
• He writes down the results and the basis he used:

• If he used {|0〉 , |1〉} he writes down 0 if he gets |0〉 and 1 if
he gets |1〉

• If he used {|+〉 , |−〉} he writes down 0 if he gets |+〉 and 1
if he gets |−〉
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BB84: Alice and Bob on the phone

• After this process, Alice and Bob talk on a classical
channel (authenticated but not necessarily secure)
• Bob announces the bases he has used for the

measurements and Alice announces the bases she used
to code the bits
• Bob does NOT announce the results of his measurements
• For those bits in which Bob measured with the same basis

that Alice used for coding, he has got the bit that Alice
intended to send
• The rest are discarded (they will keep about half of the bits)
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BB84: The protocol in an image

Image credits: A. Carrasco-Casado, V. Fernández, N. Denisenko
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Eve tries to intercept and resend...

• Imagine Eve has access to the qubits that Alice sends to
Bob
• Eve could try to measure and resend the qubit to Bob
• It is imposible for Eve to distinguish the four possibilities
{|0〉 , |1〉 , |+〉 , |−〉} because she does not know the basis
that Alice has chosen
• If Eve chooses a basis at random, she will make an error

half of the time and Alice and Bob may detect it (by sharing
some of the bits of the key to check that they are equal)
• Eve cannot copy the qubits and wait to check the basis that

Alice and Bob have used (no cloning theorem)
• Other more complex attacks are possible, but can be

shown to fail
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Information reconciliation and privacy amplification
• Because of imperfections in the channel and devices or

because of eavesdropping, some of the bits that Alice and
Bob have may be different
• They can conduct a process of information reconciliation

(for instance, with the cascade protocol)
• After this phase (or even before), some information may

have leaked to Eve
• Alice and Bob can perform privacy amplification (for

instance, with randomness extractors)

Image credits: hikingandcoding.wordpress.com
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QKD at CERN

Image credits: https://arxiv.org/pdf/1203.4940.pdf
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Kak’s three-stage protocol
• Proposed by Kak in 2006
• It needs an authenticated quantum channel
• Suppose Alice wants to send |x〉 ∈ {|0〉 , |1〉} to Bob:

• Alice chooses θA at random and sends RY (θA) |x〉 to Bob
• Bob choose θB at random and sends RY (θB)RY (θA) |x〉

back to Alice
• Alice applies RY (−θA) and sends

RY (−θA)RY (θB)RY (θA) |x〉 = RY (θB) |x〉
to Bob

• Bob can now recover |x〉 by applying RY (−θB)

Image credits: wikipedia.org
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The quantum one-time pad

• The analagous of the one-time pad with quantum
operations would be to choose a ∈ {0,1} at random and
encode |x〉 ∈ {|0〉 , |1〉} as

X a |x〉 = |x ⊕ a〉

• This cannot be extended to general qubits |ψ〉 because
X |+〉 = |+〉 and X |−〉 ≡ |−〉
• We need to choose two bits a and b at random and encode
|ψ〉 as

Z bX a |ψ〉

• Bob can now recover |ψ〉 by applying X aZ b

• It can be proved that this is unconditionally secure
• The QOTP is the basis of some blind quantum computing

protocols
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Other protocols that use independent qubits
• The use of independent qubits does not fully exploit the

possibilities of quantum information, but there are some
additional interesting applications
• For instance:

• Other QKD protocols: B92, SARG04, Six-state protocol...
• The concept of quantum money (Wiesner)
• The Elitzur-Vaidman bomb tester
• Quantum position verification
• One-qubit classifier

Image credits: The American Association for the Advancement of Science
44 / 64



Part IV

Two-qubit systems: more than the
sum of their parts
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Working with two qubits

• Each of the qubits can be in state |0〉 or in state |1〉
• So for two qubits we have four possibilities:

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉

that we also denote

|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉

or
|00〉 , |01〉 , |10〉 , |11〉

• Of course, we can have superpositions so a generic state
is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉
where αxy are complex numbers such that

1∑
x ,y=0

|αxy |2 = 1
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Measuring a two-qubit system

• Suppose we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• If we measure both qubits, we will obtain:
• 00 with probability |α00|2 and the new state will be |00〉
• 01 with probability |α01|2 and the new state will be |01〉
• 10 with probability |α10|2 and the new state will be |10〉
• 11 with probability |α11|2 and the new state will be |11〉

• It is an analogous situation to what we had with one qubit,
but now with four possibilities
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Measuring just one qubit in a two-qubit system

• If we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

we can also measure just one qubit
• If we measure the first qubit (for the second one is

analogous):
• We will get 0 with probability |α00|2 + |α01|2
• In that case, the new state of |ψ〉 will be

α00 |00〉+ α01 |01〉√
|α00|2 + |α01|2

• We will get 1 with probability |α10|2 + |α11|2
• In that case, the new state of |ψ〉 will be

α10 |10〉+ α11 |11〉√
|α10|2 + |α11|2
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Two-qubit states and vector representation

• A general two-qubit quantum state is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• We can represent with the column vector
α00
α01
α10
α11


• We can compute inner products by noticing that

〈00|00〉 = 〈01|01〉 = 〈10|10〉 = 〈11|11〉 = 1

〈00|01〉 = 〈00|10〉 = 〈00|11〉 = · · · = 〈11|00〉 = 0

• A two-qubit quantum gate is a unitary matrix U of size 4×4
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Tensor product of one-qubit gates

• The simplest way of obtaining a two-qubit gate is by having
a pair of one-qubit gates A and B acting on each of the
qubits
• In this case, the matrix for the two-qubit gate is the tensor

product A⊗ B
• It holds that

(A⊗ B)(|ψ1〉 ⊗ |ψ2〉) = (A |ψ1〉)⊗ (B |ψ2〉)

• Of course, either A or B may be the identity
• This does NOT exhaust all posible two-qubit gates

Image credits: wikipedia.org
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The CNOT gate

• The CNOT (or controlled-NOT or cX ) gate is given by the
(unitary) matrix 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• If the first qubit is |0〉, nothing changes. If it is |1〉, we flip

the second bit (and the first stays the same)
• That is:

|00〉 → |00〉 |01〉 → |01〉

|10〉 → |11〉 |11〉 → |10〉
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Action of the CNOT gate

• Its action on x , y ∈ {0,1} is, then:

|x〉 • |x〉
|y〉 |y ⊕ x〉

• This is an extremely important gate for it allows to:
• Create entanglement (more on this soon)
• Copy classical information, because:

|00〉 → |00〉

|10〉 → |11〉
• Construct other controlled gates
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Equivalences with CNOT gates

• Sometimes, CNOT gates are not implemented between all
pairs of qubits in a quantum computer
• We can use H gates to change the control and target of a

CNOT gate

H • H

H H

• We can swap states using three CNOT gates

• •

•
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Constructing controlled gates by using the CNOT gate

• Any one-qubit gate U can be decomposed in the form

eiθAXBXC

with ABC = I
• Then, the circuit

• • RZ (θ)

C B A

implements a U gate on the lower qubit controlled by the
upper qubit
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The no-cloning theorem

• There is no quantum gate that makes copies of an
arbitrary (unknown) qubit
• The proof is easy: suppose we have a gate U such that

U |ψ〉 |0〉 = |ψ〉 |ψ〉
• Then U |00〉 = |00〉 and U |10〉 = |11〉 and by linearity

U
( 1√

2
(|00〉+|10〉)

)
=

1√
2
(U |00〉+U |10〉) = 1√

2
(|00〉+|11〉)

• But
|00〉+ |10〉√

2
=
( |0〉+ |1〉√

2

)
|0〉

so we should have

U
( |00〉+ |10〉√

2

)
=

(|0〉+ |1〉)√
2

(|0〉+ |1〉)√
2

6= 1√
2
(|00〉+ |11〉)
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Quantum entanglement: the spooky action at a
distance

• We say that a state |ψ〉 is a product state if it can be written
in the form

|ψ〉 = |ψ1〉 |ψ2〉

where |ψ1〉 and |ψ2〉 are two states (of at least one qubit)
• An entangled state is a state that is not a product state
• Example of entangled states (Bell states):

|00〉+ |11〉√
2

|00〉 − |11〉√
2

|01〉+ |10〉√
2

|01〉 − |10〉√
2
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Hello, entangled world!

• We can construct (and measure) Bell states with simple
circuits

|0〉 H •

|0〉

• Initially, the state of the system is |00〉
• After we apply the H gate, the state is

|00〉+ |10〉√
2

• When we apply the CNOT gate, the state changes to

|00〉+ |11〉√
2
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Hello, entangled world!

|0〉 H •

|0〉

• Before we measure the first qubit, we have the state
|00〉+|11〉√

2

• We will get 0 or 1, each with probability 1
2

• Suppose we obtain 0. Then, the new state will be |00〉
• Then, when we measure the second qubit we will obtain 0

with probability 1!
• Also, if we obtain 1 in the first qubit, in the second we will

also obtain 1!
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Part V

The CHSH game: Nature isn’t
classical, dammit
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The CHSH game

• Based in an inequality proposed in 1969 by Clauser,
Horne, Shimony and Holt based on previous work by John
Bell
• Alice and Bob receive bits x and y from a referee
• They have to respond with bits a and b
• They win if

a⊕ b = x · y
• They can decide on a joint strategy beforehand, but they

cannot communicate during the game

Image credits: quantumcomputing.stackexchange.com
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Classical strategies for the CHSH game

• Alice and Bob can win 75% of the time if they always
answer ‘0’
• No other deterministic strategy can do better
• And probabilistic strategies are convex combinations of

classical strategies so they cannot improve the 75%
success rate

Image credits: Ryan O’Donnell
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Quantum strategy for the CHSH game

• Alice and Bob share a Bell pair |00〉+|11〉√
2

before the start of
the game
• If Alice receives 0, she measures her qubit and ouputs the

result
• If she receives 1, she applies RY (

π
2 ) to her qubit and then

she measures it
• If Bob receives 0, he applies RY (

π
4 ). Else, he applies

RY (−π
4 ).

• Then, he measures his qubit
• The probability of winning is now cos2(π8 ) ≈ 0.85 > 0.75

|0〉 H • RY (
π
2 )

|0〉 RY (
π
4 )
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Some comments on the CHSH game

• It can be proved that cos2(π8 ) is the highest possible
success rate for a quantum strategy (Tsirelson’s bound)
• The CHSH game can be used to rule out local realism
• Several experiments have been conducted, including:

• Aspect et al. (1981-82)
• Hensen et al. (2005) - Eliminate the locality and detection

loopholes
• All of them agree with the predictions of quantum theory

Image credits: George Stamatiou based on png file of C.Thompson
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The GHZ game

• Introduced by Greenberger, Horne and Zeilinger
• A referee selects rst from {000,011,101,110} and sends r

to Alice, s to Bob and t to Charlie
• They produce a, b and c and win if

a⊕ b ⊕ c = r ∨ s ∨ t

• Classically, they can only win with 75% probability
• Quantumly, they can win every single time

• They share the state

1
2
(|000〉 − |011〉 − |101〉 − |110〉

• They apply H to their qubit if the receive 1
• They measure and return the answer

• This is sometimes called “quantum pseudo-telepathy”
(Brassard, Cleve, Tapp)
• Both the CHSH and the GHZ game can be used for

randomness certification (and expansion)
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