
A Practical Introduction to Quantum
Computing: From Qubits to Quantum

Machine Learning and Beyond

Elı́as F. Combarro
combarro@gmail.com

CERN openlab (Geneva, Switzerland) - University of Oviedo (Oviedo, Spain)

CERN - November/December 2020

mailto:combarro@gmail.com

Part I

Introduction: quantum computing...
the end of the world as we know it?

2 / 133

I, for one, welcome our new quantum overlords

Image credits: sciencenews.org

3 / 133

Philosophy of the course

Image credits: Modified from an Instagram image by Bob MacGuffie

4 / 133

Tools and resources
• Jupyter Notebooks

• Web application to create and execute notebooks that
include code, images, text and formulas

• They can be used locally (Anaconda) or in the cloud
(mybinder.org, Google Colab...)

• IBM Quantum Experience
• Free online access to quantum simulators (up to 32 qubits)

and actual quantum computers (1, 5 and 15 qubits) with
different topologies

• Programmable with a visual interface and via different
languages (python, qasm, Jupyter Notebooks)

• Launched in May 2016
• https://quantum-computing.ibm.com/

Image credits: IBM 5 / 133

https://quantum-computing.ibm.com/

Tools and resources (2)

• Quirk
• Online simulator (up to 16 qubits)
• Lots of different gates and visualization options
• http://algassert.com/quirk

• D-Wave Leap
• Access to D-Wave quantum computers
• Ocean: python library for quantum annealing
• Problem specific (QUBO, Ising model...)
• https://www.dwavesys.com/take-leap

6 / 133

http://algassert.com/quirk
https://www.dwavesys.com/take-leap

The shape of things to come

Image credits: Created with wordclouds.com

7 / 133

What is quantum computing?

Quantum computing
Quantum computing is a computing paradigm that exploits
quantum mechanical properties (superposition, entanglement,
interference...) of matter in order to do calculations

Image credits: Erik Lucero

8 / 133

Models of quantum computing
• There are several models of quantum computing (they’re

all equivalent)
• Quantum Turing machines
• Quantum circuits
• Measurement based quantum computing (MBQC)
• Adiabatic quantum computing
• Topological quantum computing

• Regarding their computational capabilities, they are
equivalent to classical models (Turing machines)

Image credits: Getty Images
9 / 133

Quantum and classical computational complexity

Image credits: wikipedia.org

10 / 133

What technologies are used to build quantum
computers?

Image credits: Graphic by C. Bickle/Science data by Gabriel Popkin

11 / 133

What is a quantum computer like?

Image credits: IBM

The Sounds of IBM: IBM Q
12 / 133

https://www.youtube.com/watch?v=o-FyH2A7Ed0

Programming a quantum computer
• Different frameworks and programming languages:

• qasm
• Qiskit (IBM)
• Cirq (Google)
• Forest/pyqil (Rigetti)
• Q# (Microsoft)
• Ocean (D-Wave)
• ...

• Most of them for quantum circuit specification

Image credits: IBM

13 / 133

What are the elements of a quantum circuit?

• Every computation has three elements: data, operations
and results
• In quantum circuits:

• Data = qubits
• Operations = quantum gates (unitary transformations)
• Results = measurements

Image credits: Adobe Stock

14 / 133

Part II

One-qubit systems: one qubit to
rule them all

15 / 133

What is a qubit?
• A classical bit can take two different values (0 or 1). It is

discrete.
• A qubit can “take” infinitely many different values. It is

continuous.
• Qubits live in a Hilbert vector space with a basis of two

elements that we denote |0〉 y |1〉.
• A generic qubit is in a superposition

|ψ〉 = α |0〉+ β |1〉
where α and β are complex numbers such that

|α|2 + |β|2 = 1

Image credits: https://prateekvjoshi.com/ 16 / 133

Measuring a qubit
• The way to know the value of a qubit is to perform a

measurement. However
• The result of the measurement is random
• When we measure, we only obtain one (classical) bit of

information
• If we measure the state |ψ〉 = α |0〉+ β |1〉 we get 0 with

probability |α|2 and 1 with probability |β|2.
• Moreover, the new state after the measurement will be |0〉

or |1〉 depending of the result we have obtained
(wavefunction colapse)
• We cannot perform several independent measurements of
|ψ〉 because we cannot copy the state (no-cloning
theorem)

17 / 133

What are quantum gates?

• Quantum mechanics tells us that the evolution of an
isolated state is given by the Schrödinger equation

• In the case of quantum circuits, this implies that the
operations that can be carried out are given by unitary
matrices. That is, matrices U of complex numbers verifying

UU† = U†U = I

where U† is the conjugate transpose of U.
• Each such matrix is a possible quantum gate in a quantum

circuit

18 / 133

Reversible computation
• As a consequence, all the operations have an inverse:

reversible computing
• Every gate has the same number of inputs and outputs
• We cannot directly implement some classical gates such

as or , and , nand , xor ...
• But we can simulate any classical computation with small

overhead
• Theoretically, we could compute without wasting energy

(Landauer’s principle, 1961)

Image credits: wikipedia.org 19 / 133

One-qubit gates

• When we have just one qubit |ψ〉 = α |0〉+ β |1〉, we usually

represent it as a column vector
(
α
β

)
• Then, a one-qubit gate can be identified with a matrix

U =

(
a b
c d

)
that satisfies(

a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
where a,b, c,d are the conjugates of complex numbers
a,b, c,d .

20 / 133

Action of a one-qubit gate

• A state |ψ〉 = α |0〉+ β |1〉 is transformed into(
a b
c d

)(
α
β

)
=

(
aα+ bβ
cα+ dβ

)
that is, into the state |ψ〉 = (aα+ bβ) |0〉+ (cα+ dβ) |1〉
• Since U is unitary, it holds that

|(aα+ bβ)|2 + |(cα+ dβ)|2 = 1

21 / 133

The X or NOT gate

• The X gate is defined by the (unitary) matrix(
0 1
1 0

)
• Its action (in quantum circuit notation) is

|0〉 X |1〉

|1〉 X |0〉

that is, it acts like the classical NOT gate
• On a general qubit its action is

α |0〉+ β |1〉 X β |0〉+ α |1〉

22 / 133

The Z gate

• The Z gate is defined by the (unitary) matrix(
1 0
0 −1

)
• Its action is

|0〉 Z |0〉

|1〉 Z − |1〉

23 / 133

The H or Hadamard gate

• The H or Hadamard gate is defined by the (unitary) matrix

1√
2

(
1 1
1 −1

)
• Its action is

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

• We usually denote

|+〉 := |0〉+ |1〉√
2

and
|−〉 := |0〉 − |1〉√

2
24 / 133

Other important gates

• Y gate (
0 −i
i 0

)
• S gate (

1 0
0 ei π2

)
• T gate (

1 0
0 ei π4

)
• The gates X , Y and Z are also called, together with the

identity, the Pauli gates. An alternative notation is σX , σY ,
σZ .

25 / 133

The Bloch sphere

• A common way of representing the state of a qubit is by
means of a point in the surface of the Bloch sphere
• If |ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1 we can find angles
γ, δ, θ such that

α = eiγ cos
θ

2

β = eiδ sin
θ

2
• Since an overall phase is physically irrelevant, we can

rewrite
|ψ〉 = cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

26 / 133

The Bloch sphere (2)
• From |ψ〉 = cos θ2 |0〉+ eiϕ sin θ

2 |1〉 we can obtain spherical
coordinates for a point in R3

(sin θ cosϕ, sin θ sinϕ, cos θ)

Image credits: wikipedia.org
27 / 133

Rotation gates

• We can define the following rotation gates

RX (θ) = e−i θ2 X = cos
θ

2
I − i sin

θ

2
X =

(
cos θ2 −i sin θ

2
−i sin θ

2 cos θ2

)

RY (θ) = e−i θ2 Y = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ2 − sin θ

2
sin θ

2 cos θ2

)

RZ (θ) = e−i θ2 Z = cos
θ

2
I−i sin

θ

2
Z =

(
e−i θ2 0

0 ei θ2

)
≡
(

1 0
0 eiθ

)
• Notice that RX (π) ≡ X , RY (π) ≡ Y , RZ (π) ≡ Z ,

RZ (
π
2) ≡ S, RZ (

π
4) ≡ T

28 / 133

Using rotation gates to generate one-qubit gates

• For any one-qubit gate U there exist a unit vector
r = (rx , ry , rz) and an angle θ such that

U ≡ e−i θ2 r ·σ = cos
θ

2
I − i sin

θ

2
(rxX + ryY + rzZ)

• For instance, choosing θ = π and r = (1√
2
,0, 1√

2
) we can

see that
H ≡ e−i θ2 r ·σ = −i

1√
2
(X + Z)

• Additionally, it can also be proved that there exist angles α,
β and γ such that

U ≡ RZ (α)RY (β)RZ (γ)

29 / 133

Inner product, Dirac’s notation and Bloch sphere

• The inner product of two states |ψ1〉 = α1 |0〉+ β1 |1〉 and
|ψ2〉 = α2 |0〉+ β2 |1〉 is given by

〈ψ1|ψ2〉 =
(
α1 β1

)(α2
β2

)
= α1α2 + β1β2

• Notice that 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0
• This allows us to compute

〈ψ1|ψ2〉 =
(
α1 〈0|+ β1 〈1|

)
(α2 |0〉+ β2 |1〉)

= α1α2 〈0|0〉+ α1β2 〈0|1〉+ β1α2 〈1|0〉+ β1β2 〈1|1〉
= α1α2 + β1β2

• Orthogonal states are antipodal on the Bloch sphere

30 / 133

Hello, quantum world!

• Our very first quantum circuit!

|0〉 H

• After applying the H gate the qubit state is

|0〉+ |1〉√
2

• When we measure, we obtain 0 or 1, each with 50%
probability: we have a circuit that generates perfectly
uniform random bits!

31 / 133

Part III

The BB84 protocol: Alice and Bob’s
hotline

32 / 133

One-time pad: a Catch-22 situation

• Alice wants to send Bob a message m without Eve being
able to learn anything about its content
• This can be achieved if Alice and Bob share in advance a

string k of random bits:
• Alice computes x = m ⊕ k and sends x to Bob
• Eve cannot learn anything from x

(Pr(M = m|X = x) = Pr(M = m))
• But Bob can recover m by computing x ⊕ k

• The main problem is that k has to be as long as m and
cannot be reused so... how to agree on k?

Image credits: nullprogram.com

33 / 133

The problem of key distribution
• Alice and Bob may share several keys for later use when

they are together
• But... what if they cannot meet each other?
• There exist key distribution methods like the Diffie-Hellman

protocol but...
• They are not unconditionally secure (they usually rely on

hardness assumptions)
• In fact, DH can be broken with quantum computers!

34 / 133

BB84: Alice’s part

• In 1984, Charles Bennett and Gilles Brassard proposed
the first protocol for quantum key distribution (QKD)
• Alice generates a (private) string of random bits
• She could even do this with a quantum computer (H gate +

measure)
• Then, for each bit she randomly chooses if she encodes it

in the {|0〉 , |1〉} basis or in the {|+〉 , |−〉} basis (remember
that |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉))

• She can easily do this by using H and X gates (recall that
H |0〉 = |+〉 ,H |1〉 = |−〉 ,X |0〉 = |1〉 ,X |1〉 = |0〉)
• Alice sends the resulting qubits to Bob (through a quantum

but not necessarily secure channel)

35 / 133

BB84: Bob’s part

• Each time Bob receives a qubit, he randomly decides
whether he will measure it in the {|0〉 , |1〉} basis or in the
{|+〉 , |−〉} basis
• He does this by applying (or not) the H gate before

measuring
• He writes down the results and the basis he used:

• If he used {|0〉 , |1〉} he writes down 0 if he gets |0〉 and 1 if
he gets |1〉

• If he used {|+〉 , |−〉} he writes down 0 if he gets |+〉 and 1
if he gets |−〉

36 / 133

BB84: Alice and Bob on the phone

• After this process, Alice and Bob talk on a classical
channel (authenticated but not necessarily secure)
• Bob announces the bases he has used for the

measurements and Alice announces the bases she used
to code the bits
• Bob does NOT announce the results of his measurements
• For those bits in which Bob measured with the same basis

that Alice used for coding, he has got the bit that Alice
intended to send
• The rest are discarded (they will keep about half of the bits)

37 / 133

BB84: The protocol in an image

Image credits: A. Carrasco-Casado, V. Fernández, N. Denisenko

38 / 133

Eve tries to intercept and resend...

• Imagine Eve has access to the qubits that Alice sends to
Bob
• Eve could try to measure and resend the qubit to Bob
• It is imposible for Eve to distinguish the four possibilities
{|0〉 , |1〉 , |+〉 , |−〉} because she does not know the basis
that Alice has chosen
• If Eve chooses a basis at random, she will make an error

half of the time and Alice and Bob may detect it (by sharing
some of the bits of the key to check that they are equal)
• Eve cannot copy the qubits and wait to check the basis that

Alice and Bob have used (no cloning theorem)
• Other more complex attacks are possible, but can be

shown to fail

39 / 133

Information reconciliation and privacy amplification
• Because of imperfections in the channel and devices or

because of eavesdropping, some of the bits that Alice and
Bob have may be different
• They can conduct a process of information reconciliation

(for instance, with the cascade protocol)
• After this phase (or even before), some information may

have leaked to Eve
• Alice and Bob can perform privacy amplification (for

instance, with randomness extractors)

Image credits: hikingandcoding.wordpress.com

40 / 133

QKD at CERN

Image credits: https://arxiv.org/pdf/1203.4940.pdf

41 / 133

Kak’s three-stage protocol
• Proposed by Kak in 2006
• It needs an authenticated quantum channel
• Suppose Alice wants to send |x〉 ∈ {|0〉 , |1〉} to Bob:

• Alice chooses θA at random and sends RY (θA) |x〉 to Bob
• Bob choose θB at random and sends RY (θB)RY (θA) |x〉

back to Alice
• Alice applies RY (−θA) and sends

RY (−θA)RY (θB)RY (θA) |x〉 = RY (θB) |x〉
to Bob

• Bob can now recover |x〉 by applying RY (−θB)

Image credits: wikipedia.org

42 / 133

The quantum one-time pad

• The analagous of the one-time pad with quantum
operations would be to choose a ∈ {0,1} at random and
encode |x〉 ∈ {|0〉 , |1〉} as

X a |x〉 = |x ⊕ a〉

• This cannot be extended to general qubits |ψ〉 because
X |+〉 = |+〉 and X |−〉 ≡ |−〉
• We need to choose two bits a and b at random and encode
|ψ〉 as

Z bX a |ψ〉

• Bob can now recover |ψ〉 by applying X aZ b

• It can be proved that this is unconditionally secure
• The QOTP is the basis of some blind quantum computing

protocols

43 / 133

Other protocols that use independent qubits
• The use of independent qubits does not fully exploit the

possibilities of quantum information, but there are some
additional interesting applications
• For instance:

• Other QKD protocols: B92, SARG04, Six-state protocol...
• The concept of quantum money (Wiesner)
• The Elitzur-Vaidman bomb tester
• Quantum position verification
• One-qubit classifier

Image credits: The American Association for the Advancement of Science
44 / 133

Part IV

Two-qubit systems: more than the
sum of their parts

45 / 133

Working with two qubits

• Each of the qubits can be in state |0〉 or in state |1〉
• So for two qubits we have four possibilities:

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉

that we also denote

|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉

or
|00〉 , |01〉 , |10〉 , |11〉

• Of course, we can have superpositions so a generic state
is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉
where αxy are complex numbers such that

1∑
x ,y=0

|αxy |2 = 1

46 / 133

Measuring a two-qubit system

• Suppose we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• If we measure both qubits, we will obtain:
• 00 with probability |α00|2 and the new state will be |00〉
• 01 with probability |α01|2 and the new state will be |01〉
• 10 with probability |α10|2 and the new state will be |10〉
• 11 with probability |α11|2 and the new state will be |11〉

• It is an analogous situation to what we had with one qubit,
but now with four possibilities

47 / 133

Measuring just one qubit in a two-qubit system

• If we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

we can also measure just one qubit
• If we measure the first qubit (for the second one is

analogous):
• We will get 0 with probability |α00|2 + |α01|2
• In that case, the new state of |ψ〉 will be

α00 |00〉+ α01 |01〉√
|α00|2 + |α01|2

• We will get 1 with probability |α10|2 + |α11|2
• In that case, the new state of |ψ〉 will be

α10 |10〉+ α11 |11〉√
|α10|2 + |α11|2

48 / 133

Two-qubit states and vector representation

• A general two-qubit quantum state is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• We can represent with the column vector
α00
α01
α10
α11


• We can compute inner products by noticing that

〈00|00〉 = 〈01|01〉 = 〈10|10〉 = 〈11|11〉 = 1

〈00|01〉 = 〈00|10〉 = 〈00|11〉 = · · · = 〈11|00〉 = 0

• A two-qubit quantum gate is a unitary matrix U of size 4×4

49 / 133

Tensor product of one-qubit gates

• The simplest way of obtaining a two-qubit gate is by having
a pair of one-qubit gates A and B acting on each of the
qubits
• In this case, the matrix for the two-qubit gate is the tensor

product A⊗ B
• It holds that

(A⊗ B)(|ψ1〉 ⊗ |ψ2〉) = (A |ψ1〉)⊗ (B |ψ2〉)

• Of course, either A or B may be the identity
• This does NOT exhaust all posible two-qubit gates

Image credits: wikipedia.org

50 / 133

The CNOT gate

• The CNOT (or controlled-NOT or cX) gate is given by the
(unitary) matrix 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• If the first qubit is |0〉, nothing changes. If it is |1〉, we flip

the second bit (and the first stays the same)
• That is:

|00〉 → |00〉 |01〉 → |01〉

|10〉 → |11〉 |11〉 → |10〉

51 / 133

Action of the CNOT gate

• Its action on x , y ∈ {0,1} is, then:

|x〉 • |x〉
|y〉 |y ⊕ x〉

• This is an extremely important gate for it allows to:
• Create entanglement (more on this soon)
• Copy classical information, because:

|00〉 → |00〉

|10〉 → |11〉
• Construct other controlled gates

52 / 133

Equivalences with CNOT gates

• Sometimes, CNOT gates are not implemented between all
pairs of qubits in a quantum computer
• We can use H gates to change the control and target of a

CNOT gate

H • H

H H

• We can swap states using three CNOT gates

• •

•

53 / 133

Constructing controlled gates by using the CNOT gate

• Any one-qubit gate U can be decomposed in the form

eiθAXBXC

with ABC = I
• Then, the circuit

• • RZ (θ)

C B A

implements a U gate on the lower qubit controlled by the
upper qubit

54 / 133

The no-cloning theorem

• There is no quantum gate that makes copies of an
arbitrary (unknown) qubit
• The proof is easy: suppose we have a gate U such that

U |ψ〉 |0〉 = |ψ〉 |ψ〉
• Then U |00〉 = |00〉 and U |10〉 = |11〉 and by linearity

U
(1√

2
(|00〉+|10〉)

)
=

1√
2
(U |00〉+U |10〉) = 1√

2
(|00〉+|11〉)

• But
|00〉+ |10〉√

2
=
(|0〉+ |1〉√

2

)
|0〉

so we should have

U
(|00〉+ |10〉√

2

)
=

(|0〉+ |1〉)√
2

(|0〉+ |1〉)√
2

6= 1√
2
(|00〉+ |11〉)

55 / 133

Quantum entanglement: the spooky action at a
distance

• We say that a state |ψ〉 is a product state if it can be written
in the form

|ψ〉 = |ψ1〉 |ψ2〉

where |ψ1〉 and |ψ2〉 are two states (of at least one qubit)
• An entangled state is a state that is not a product state
• Example of entangled states (Bell states):

|00〉+ |11〉√
2

|00〉 − |11〉√
2

|01〉+ |10〉√
2

|01〉 − |10〉√
2

56 / 133

Hello, entangled world!

• We can construct (and measure) Bell states with simple
circuits

|0〉 H •

|0〉

• Initially, the state of the system is |00〉
• After we apply the H gate, the state is

|00〉+ |10〉√
2

• When we apply the CNOT gate, the state changes to

|00〉+ |11〉√
2

57 / 133

Hello, entangled world!

|0〉 H •

|0〉

• Before we measure the first qubit, we have the state
|00〉+|11〉√

2

• We will get 0 or 1, each with probability 1
2

• Suppose we obtain 0. Then, the new state will be |00〉
• Then, when we measure the second qubit we will obtain 0

with probability 1!
• Also, if we obtain 1 in the first qubit, in the second we will

also obtain 1!

58 / 133

Part V

The CHSH game: Nature isn’t
classical, dammit

59 / 133

The CHSH game

• Based in an inequality proposed in 1969 by Clauser,
Horne, Shimony and Holt based on previous work by John
Bell
• Alice and Bob receive bits x and y from a referee
• They have to respond with bits a and b
• They win if

a⊕ b = x · y
• They can decide on a joint strategy beforehand, but they

cannot communicate during the game

Image credits: quantumcomputing.stackexchange.com

60 / 133

Classical strategies for the CHSH game

• Alice and Bob can win 75% of the time if they always
answer ‘0’
• No other deterministic strategy can do better
• And probabilistic strategies are convex combinations of

classical strategies so they cannot improve the 75%
success rate

Image credits: Ryan O’Donnell

61 / 133

Quantum strategy for the CHSH game

• Alice and Bob share a Bell pair |00〉+|11〉√
2

before the start of
the game
• If Alice receives 0, she measures her qubit and ouputs the

result
• If she receives 1, she applies RY (

π
2) to her qubit and then

she measures it
• If Bob receives 0, he applies RY (

π
4). Else, he applies

RY (−π
4).

• Then, he measures his qubit
• The probability of winning is now cos2(π8) ≈ 0.85 > 0.75

|0〉 H • RY (
π
2)

|0〉 RY (
π
4)

62 / 133

Some comments on the CHSH game

• It can be proved that cos2(π8) is the highest possible
success rate for a quantum strategy (Tsirelson’s bound)
• The CHSH game can be used to rule out local realism
• Several experiments have been conducted, including:

• Aspect et al. (1981-82)
• Hensen et al. (2005) - Eliminate the locality and detection

loopholes
• All of them agree with the predictions of quantum theory

Image credits: George Stamatiou based on png file of C.Thompson

63 / 133

The GHZ game

• Introduced by Greenberger, Horne and Zeilinger
• A referee selects rst from {000,011,101,110} and sends r

to Alice, s to Bob and t to Charlie
• They produce a, b and c and win if

a⊕ b ⊕ c = r ∨ s ∨ t

• Classically, they can only win with 75% probability
• Quantumly, they can win every single time

• They share the state

1
2
(|000〉 − |011〉 − |101〉 − |110〉)

• They apply H to their qubit if the receive 1
• They measure and return the answer

• This is sometimes called “quantum pseudo-telepathy”
(Brassard, Cleve, Tapp)
• Both the CHSH and the GHZ game can be used for

randomness certification (and expansion)
64 / 133

Part VI

Quantum teleportation and
superdense coding: entangled up in

blue

65 / 133

Quantum teleportation: Quantum me up, Scotty!

• Can Alice sent a qubit |ψ〉 to Bob it there is no quantum
channel available?
• We are interested in the most general case, even if Alice

does not know which state she has
• The problem can be solved if Alice and Bob share an

entangled state 1√
2
(|00〉+ |11〉)

Image credits: www.geeksaresexy.net

66 / 133

Quantum teleportation: Alice’s part
• Alice and Bob share an entangled state 1√

2
(|00〉+ |11〉)

• This can be done in advance
• Or they can rely on a source that distributes entangled pairs

• Alice applies a CNOT gate to the qubit she wants to
teleport |ψ〉 = a |0〉+ b |1〉 and to her part of the Bell pair.
We will have

1√
2
(a(|000〉+ |011〉) + b(|110〉+ |101〉))

• Alice further applies the H gate to the qubit she wants
teleported. Then, we have

1
2
(
|00〉 (a |0〉+ b |1〉) + |01〉 (b |0〉+ a |1〉)

+ |10〉 (a |0〉 − b |1〉) + |11〉 (−b |0〉+ a |1〉)
)

• Alice measures her two qubits and sends the result (two
classical bits) to Bob (through a classical channel)

67 / 133

Quantum teleportation: Bob’s part

• Bob uses the second bit received from Alice to decide if he
applies X to his qubit
• And he uses the first bit to decide if he applies Z

Image credits: ProjectQ

68 / 133

Quantum teleportation: some comments

• It is not matter that is teleported but information
• When Alice measure her qubit, she looses it (if not, we

would be contradicting the no-cloning theorem)
• To teleport a qubit, we need two classical bits and one

entangled pair:

2bits + 1ebit ≥ 1qubit

• Teleportation is not instantaneous, we need classical
communication (no-communication theorem)
• Quantum teleportation has been shown experimentally

(current record is 1,400 km)
• Demonstration of quantum teleportation in Quirk

69 / 133

https://bit.ly/2KdXHdy

Entanglement swapping
• Quantum teleportation can also be used with entangled

qubits
• Alice shares a Bell pair with Bob and another one with

Charlie
• In the figure, the top and bottom qubits belong to Alice.

The second from the top belongs to Bob and the other to
Charlie
• Alice teleports her top qubit to Charlie
• Now Bob’s and Charlie’s qubits are entangled (although

maybe they were never in direct contact)

Image credits: Created with Quirk. Click here to access the circuit

70 / 133

https://bit.ly/3kAT4qq

Gate teleportation

• We can generalize the idea of quantum teleportation to
teleport the action of gates
• With the circuit of the figure, we can apply gate U to an

arbitrary state |ψ〉
• This is useful if preparing 1√

2
(|0〉U |0〉+ |1〉U |1〉) and

applying UXU†,UZU†,UZXU† are easy compared to
applying U to a general qubit
• Such a situation can happen when U = T in the context of

fault-tolerant quantum computing

|ψ〉 • H •

|0〉 H • •

|0〉 U U† Z U

71 / 133

Superdense coding: two for the price of one (more or
less)

• As we have seen, in the presence of a Bell pair, we can
send a qubit with just two classical bits
• But... how many classical bits can we communicate with

one qubit?
• Holevo’s bound: the accesible information of one qubit is

just one bit
• However, if Alice and Bob share in advance a Bell pair...

we can send two bits of information with just one qubit!

1qubit + 1ebit ≥ 2bits

• This protocol is, in some sense, the inverse of quantum
teleportation

72 / 133

Superdense coding: Alice’s part

• Alice and Bob share a Bell pair in advance 1√
2
(|00〉+ |11〉)

• Alice wants to send to Bob two classical bits b1 and b2

• If b2 = 1, she applies X to her qubit
• If b1 = 1, she applies Z to her qubit
• Then, she sends her qubit to Bob

Image credits: www.quantum-bits.org

73 / 133

Superdense coding: Bob’s part

• Bob receives Alice’s qubit
• He applies a CNOT gate controlled by Alice’s qubit
• He applies H to Alice’s qubit
• He measures and recovers b1 and b2

Image credits: www.quantum-bits.org

74 / 133

Superdense coding: an example

• Suppose Alice wants to send 11
• We start with 1√

2
(|00〉+ |11〉)

• After Alice’s operations, we will have 1√
2
(|01〉 − |10〉)

• When Bob applies CNOT he obtains

1√
2
(|01〉 − |11〉) = 1√

2
(|0〉 − |1〉) |1〉

• And with the H gate he gets |11〉 that now he can measure

75 / 133

Part VII

Deutsch’s algorithm: the
grandfather of all quantum

algorithms

76 / 133

Deutsch’s algorithm: statement of the problem
• In 1985, David Deutsch proposed a very simple algorithm

that, nevertheless, hints at the capabilities of quantum
computing
• The problem it solves is only of theoretical relevance and

was later generalized in a joint work with Jozsa
• We are given a circuit (an oracle) that implements a

one-bit boolean function and we are asked to determine
whether the function is constant (returns the same value
for all inputs) or balanced (returns 1 on one input and 0 on
the other)
• Alternatively, we can think of the oracle as indexing a bit

string of length two and we are asked to compute the XOR
of the bits of the string
• In the classical case, we would need to consult the oracle

twice, to compute both values of the function
• In the quantum case, we can make just one oracle call...

but in superposition
77 / 133

Deutsch’s algorithm: the oracle

• An oracle is treated as a black box, a circuit whose interior
we cannot know
• This circuit computes, in a reversible way, a certain

function f (in our case, of just one input)
• For the computation to be reversible, it uses as many

inputs as outputs and “writes the result” with an XOR

|x〉
Of

|x〉
|y〉 |y ⊕ f (x)〉

78 / 133

Deutsch’s algorithm: the circuit

• The quantum circuit that we need to use to solve the
problem is very simple

|0〉 H
Of

H

|1〉 H

• If the function is constant, we will measure 0
• If the function is balanced, we will measure 1

79 / 133

Deutsch’s algorithm: the magic

|0〉 H
Of

H

|1〉 H

• The initial state is |0〉 |1〉
• After the H the gates we have

(|0〉+ |1〉)(|0〉 − |1〉)
2

which is the same as

|0〉 (|0〉 − |1〉)
2

+
|1〉 (|0〉 − |1〉)

2
• When we apply the oracle, by linearity we obtain

|0〉 (|0⊕ f (0)〉 − |1⊕ f (0)〉)
2

+
|1〉 (|0⊕ f (1)〉 − |1⊕ f (1)〉)

2

80 / 133

Deutsch’s algorithm: the magic (2)

|0〉 H
Of

H

|1〉 H

• If f (0) = 0, we have

|0⊕ f (0)〉 − |1⊕ f (0)〉 = |0〉 − |1〉

• However, if f (0) = 1 we get

|0 + f (0)〉−|1⊕ f (0)〉 = |0⊕ 1〉−|1⊕ 1〉 = |1〉−|0〉 = −(|0〉−|1〉)

• For f (1) the situation is the same so the global state is

(−1)f (0) |0〉 (|0〉 − |1〉)
2

+
(−1)f (1) |1〉 (|0〉 − |1〉)

2

81 / 133

Deutsch’s algorithm: the magic (3)

|0〉 H
Of

H

|1〉 H

• We can also write that state as

|0〉 (|0〉 − |1〉)
2

+
(−1)f (0)+f (1) |1〉 (|0〉 − |1〉)

2
• So if f (0) = f (1), we will have

|0〉 (|0〉 − |1〉)
2

+
|1〉 (|0〉 − |1〉)

2
=

(|0〉+ |1〉)(|0〉 − |1〉)
2

and when we apply the last H and measure we obtain 0.
• But if f (0) 6= f (1), the state is

|0〉 (|0〉 − |1〉)
2

− |1〉 (|0〉 − |1〉)
2

=
(|0〉 − |1〉)(|0〉 − |1〉)

2
and, then, we obtain 1.

82 / 133

Deutsch’s algorithm: some comments

• When we apply the oracle we have a phase kickback: we
only act on one qubit, but it affects the whole state
• Deutch’s algorithm exploits an interference phenomenon

similar to that found in some physical experiments
(double-slit experiment, Mach-Zehnder interferometer)

Image credits: Wikipedia

83 / 133

Part VIII

Multiqubit systems: growing up!

84 / 133

n-qubit systems

• When he have n qubits, each of them can be in state |0〉
and |1〉
• Thus, for the n-qubit state we have 2n possibilities:

|00 . . . 0〉 , |00 . . . 1〉 , . . . , |11 . . . 1〉

or simply
|0〉 , |1〉 , . . . ,

∣∣2n − 1
〉

• A generic state of the system will be

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
where αi are complex numbers such that

2n−1∑
i=0

|αi |2 = 1

85 / 133

Measuring a n-qubit state

• Suppose we have the n-qubit state

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• If we measure all its qubits, we obtain:

• 0 with probability |α0|2 and the new state will be |0 . . . 00〉
• 1 with probability |α1|2 and the new state will be |0 . . . 01〉
• . . .
• 2n − 1 with probability |α2n−1|2 and the new state will be
|1 . . . 11〉

• It is analogous to what we had with one and two qubits, but
now with 2n possibilities

86 / 133

Measuring one qubit in a n-qubit state

• We have

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• If we measure the j-th qubit

• We will get 0 with probability∑
i∈I0

|αi |2

where I0 is the set of numbers whose j-th bit is 0
• In that case, the new state |ψ〉 will be∑

i∈I0 αi |i〉√∑
i∈I0 |αi |2

• The case in which we obtain 1 is analogous

87 / 133

n-qubit quantum gates

• A n-qubit state is

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• We can represent it by the column vector

α0
α1
α2
...

α2n−1


• To compute inner products with Dirac notation we only

need to note that
〈i |j〉 = δij

• Thus, a n-qubit quantum gate is a unitary matrix U of size
2n × 2n

88 / 133

The Toffoli gate

• The Toffoli gate (or CCNOT) is a 3-qubit gate. Thus, it can
be represented as a 8× 8 matrix
• Its action on elements x , y , z ∈ {0,1} is:

|x〉 • |x〉
|y〉 • |y〉
|z〉 |z ⊕ (x ∧ y)〉

• The Toffoli gate is universal for classical logic, and thus
any classical circuit can be simulated with a quantum
circuit
• However, the Toffoli gate, on its own, is not universal for

quantum computing (and it is not even necessary,
because it can be simulated with one and two-qubit gates)

89 / 133

Universal gates in quantum computing

• The number of quantum gates (even for a single qubit) is
uncountably infinite. Thus, no finite set of gates is universal
in the classical sense
• However, we can obtain finite sets of gates that allow us to

approximate any other gate as much as we want

Theorem
The one-qubit gates together with the CNOT gate are universal
for quantum computing

Theorem
The gates X, H, T and CNOT are universal for quantum
computing

90 / 133

Gate equivalences

Z = H X H

S = T T

Y = Z X S X S X

T † = S S S T

S† = S S S

However, Z , S, Y , S† and T † are usually included among the
available gates in most quantum computers (such as the ones

in the IBM Q Experience).

91 / 133

Equivalence of the Toffoli gate

H T † T T † T H

• • T T †

• • • T •

92 / 133

Part IX

Everything you always wanted to
know about quantum parallelism but

were afraid to ask

93 / 133

Urban legends about quantum parallelism

• But... don’t quantum computers try all 2n possibilities in
parallel?
• The answer is... yes and no (this is quantum computing

after all!)

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith

94 / 133

https://www.smbc-comics.com/comic/the-talk-3

Evaluating a function: querying the oracle

• As we know, in quantum computing every gate is reversible
• To compute a function f we keep the inputs unchanged

and xor the result to the output qubits
• This type of circuit is called and oracle for f (we have

already used an oracle for a one-bit function in Deutsch’s
algorithm)

Of

|x〉

|y〉 |y ⊕ f (x)〉

|x〉



95 / 133

Evaluating a function in parallel: the superposition
hocus-pocus

• Suppose that we have an oracle Of for a function f (x) with
a one-bit input
• We know that, using the H gate, we can put a qubit in

superposition
• If we start with the state |0〉 |0〉 and we apply H on the first

qubit, we will have

1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉

• If we now apply Of , by linearity we have

1√
2
|0〉 |f (0)〉+ 1√

2
|1〉 |f (1)〉

• We have evaluated the function on two different inputs with
just one call!

96 / 133

Evaluating a function in parallel: the tensor-product
abracadabra

• We can do something similar with a function
f (x1, x2, . . . , xn) on n-variables by using the following circuit

H

Of
H

H

|0〉

|0〉⊗n

• When we apply the H gates we obtain

(|0〉+ |1〉)(|0〉+ |1〉) · · · (|0〉+ |1〉) |0〉√
2n

97 / 133

Evaluating a function in parallel: the tensor-product
abracadabra (2)

• If we expand the product we get

(|0 . . . 0〉+ |0 . . . 1〉+ . . .+ |1 . . . 1〉) |0〉√
2n

=
1√
2n

2n−1∑
x=0

|x〉 |0〉

• And, when we apply the oracle, we will get the state

1√
2n

2n−1∑
x=0

|x〉 |f (x)〉

• An exponential number of function evaluations with just
one call!

H

Of
H

H

|0〉

|0〉⊗n

98 / 133

Quantum parallelism vs. non-deterministic machines

• With a non-deterministic machine, we could choose at will
some value f
• This would allow us to solve NP-complete problems
• A similar idea is used in the plot of Quarantine, a

science-fiction novel by Greg Egan

99 / 133

All that glitters ain’t gold
• And now... how do we retrieve the values f (x)?
• To obtain a result, we need to perform a measurement
• But then we will get a state of the form

|c〉 |f (c)〉
• That is, we only obtain the result of the function for a

randomly chosen input (this may be even worse than
classically evaluating the function)

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 100 / 133

https://www.smbc-comics.com/comic/the-talk-3

Interferences come to the rescue
• How can we use the 2n evaluations to extract useful

information?
• One possibility is... to produce interferences!
• The amplitudes of some states can be negative
• If we manage to “annihilitate” the amplitudes of states we

are not interested in, the probability of obtaining the
answer that we need will grow
• This is, in general, no easy task, but we know how to

achieve it in some interesting cases

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 101 / 133

https://www.smbc-comics.com/comic/the-talk-3

Part X

The Deutsch-Jozsa algorithm: a
very fast way of solving a problem

that nobody asked to solve

102 / 133

Reminder: Deutsch’s algorithm

• We have an oracle Of for a boolean function f (x)
• f can be constant (returns the same value for all inputs) or

balanced (returns 1 on one input and 0 on the other)
• Distinguishing one situation from the other requires, in the

classical case, evaluating the function on the two possible
inputs
• With a quantum computer, we can solve the problem with

just one call to Of

• The key is to use quantum parallelism together with
interference

|0〉 H
Of

H

|1〉 H

103 / 133

Upping the ante: the Deutsch-Jozsa algorithm

• The Deutsch-Jozsa algorithm solves a type of problem
called promise problem
• We are given a boolean function f (x1, . . . , xn)
• We are promised that f is either constant (always 0 or 1) or

balanced (0 for half of the inputs and 1 for the rest)
• We have to decide which of the two cases we are in by

calling the function as few times as possible
• With a classical deterministic algorithm we need (in the

worst case) 2n−1 + 1 calls to f
• With the Deutsch-Jozsa quantum algorithm it is enough to

evaluate f just once

104 / 133

Circuit for the Deutsch-Jozsa algorithm

H

Of

H

H H

H H

|1〉 H

|0〉⊗n

105 / 133

Steps in the Deutsch-Jozsa algorithm

1 We create the state |0 . . . 0〉 |1〉
2 We use Hadamard gates to create the superposition∑

x∈{0,1}n

1√
2n+1

|x〉 (|0〉 − |1〉)

3 We apply the oracle, getting∑
x∈{0,1}n

1√
2n+1

|x〉 (|0⊕ f (x)〉 − |1⊕ f (x)〉) =

∑
x∈{0,1}n

(−1)f (x)
√

2n+1
|x〉 (|0〉 − |1〉)

106 / 133

Steps in the Deutsch-Jozsa algorithm (2)

4 We apply again Hadamard gates to the n first qubits and
we obtain ∑

y∈{0,1}n

∑
x∈{0,1}n

(−1)f (x)+x ·y

2n
√

2
|y〉 (|0〉 − |1〉)

5 Finally, we measure the n first qubits.
6 If the function is constant, we will obtain |0〉. Otherwise (if

the function is balanced), we will get a string different from
|0〉.

107 / 133

Correctness of the algorithm

• The probability of measuring |0〉 is exactly ∑
x∈{0,1}n

(−1)f (x)+x ·0

2n

2

=

 ∑
x∈{0,1}n

(−1)f (x)

2n

2

• If f is constant, the sum is 1
• If f is balanced, the sum is 0

108 / 133

Some comments on the Deutsch-Jozsa algorithm

• The problem we have solved is academical, with no
practical interest
• But... it shows how quantum computing can obtain global

information about a function with just one evaluation
• The key is to use:

• Quantum parallelism (because of superposition)
• Interference (constructive and destructive)

• Similar ideas are used in other algorithms, like the
Bernstein-Vazirani and Simon methods

109 / 133

Part XI

Grover’s algorithm: finding the
needle in the haystack

110 / 133

Statement of the problem
• Grover’s algorithm is used to solve search problems
• Imagine we have an unsorted list of N elements
• One of them verifies a certain condition and we want to

find it
• Any classical algorithm requires O(N) queries to the list in

the worst case
• Grover’s algorithm can find the element with O(

√
N)

queries

Image credits: Downloaded from www.usnewsglobaleducation.com

111 / 133

The oracle

• As in Deutsch-Jozsa’s algorithm, we will use an oracle
• This oracle computes the function f : {0,1}n ⇒ {0,1} (with

N = 2n)
• The element we want to find is the one that verifies

f (x) = 1

Of
|x〉

|y〉 |y ⊕ f (x)〉

|x〉



112 / 133

The idea behind the algorithm

• Grover’s algorithm is based on the idea of inversion about
the mean

Image credits: quantumcomputing.stackexchange.com

113 / 133

Grover’s algorithm

• Grover’s algorithm performs O(
√

N) iterations, each one
consisting in an oracle query and a call to Grover’s
diffusion operator
• The oracle “marks” those states that verify the condition
• The diffusion operator “amplifies” the amplitudes of the

marked states

O(
√

N)

H

Of

H X • X H . . .

H H X • X H . . .

H H X Z X H . . .

|1〉 H . . .

|0〉⊗n

︷ ︸︸ ︷

114 / 133

Grover’s algorithm as a rotation

• Let us denote by |x1〉 the marked element
• Then, the initial state of the upper n qubits is√

N − 1
N
|x0〉+

√
1
N
|x1〉

where

|x0〉 =
∑

x∈{0,1}n,x 6=x1

√
1

N − 1
|x〉

• We can choose θ ∈ (0, π2) such that

cos θ =

√
N − 1

N
sin θ =

√
1
N

115 / 133

Grover’s algorithm as a rotation (2)

• Define D to be Grover’s diffusion operator and G = DOf

• It can be shown that G acts on the 2-dimensional space
spawned by |x0〉 and |x1〉 as a rotation of angle 2θ
• That is

G |x0〉 = cos2θ |x0〉+ sin 2θ |x1〉

G |x1〉 = − sin2θ |x0〉+ cos 2θ |x1〉

|x0〉 =
∑

x∈{0,1}n,x 6=x1

√
1

N − 1
|x〉

• Since the initial state is cos θ |x0〉+ sin θ |x1〉, after m
iterations we will have

cos (2m + 1)θ |x0〉+ sin (2m + 1)θ |x1〉

116 / 133

Grover’s algorithm as a rotation (3)

• In order to obtain |x1〉 with high probability when we
measure we need

(2m + 1)θ ≈ π

2
and this gives

m ≈ π

4θ
− 1

2
• Since

sin θ =

√
1
N

we will have

θ ≈
√

1
N

and then we can choose

m =
⌊π

4

√
N
⌋

117 / 133

The case with multiple marked elements

• If the number of marked elements is k > 1, a similar
argument can be made by defining

|x0〉 =
∑

f (x)=0

√
1

N − k
|x〉

|x1〉 =
∑

f (x)=1

√
1
k
|x〉

• In this case

sin θ =

√
k
N

and if k � N we can choose

m =

⌊
π

4

√
N
k

⌋
118 / 133

The case with unknown number of marked elements

• If we do not know how many elements are marked, we can
still user Grover’s algorithm
• We can use Grover’s circuit combined with the Quantum

Fourier Transform to estimate k
• Or we can choose m at random. For instance:

• Uniformly from the set {0, . . . ,
⌈√

N + 1
⌉
}

• With an incremental scheme, starting with an upper bound
for m of b = 1 and increasing it exponentially up to

√
N

• In all the cases, it can be shown that a marked element will
be found with high probability with O(

√
N) queries to the

oracle

119 / 133

Some comments on Grover’s algorithm

• When we measure, we will obtain x such that f (x) = 1 with
probability depending on:
• The number m of iterations
• The fraction of values x that satisfy the condition

• If we perform too many iterations, we can overshoot and
not find a marked element
• On the other hand, if k = N

4 then one iteration will find a
marked element with certainty
• Grover’s algorithm can be used to find minima of functions

(Dürr-Hoyer’s algorithm)
• It can be shown that no other quantum algorithm can

obtain more than a quadratic speed-up over over classical
algorithms in the same setting
• A generalization of Grover’s algorithm called Amplitude

Amplification can be used with states prepared by an
arbitrary unitary A

120 / 133

Part XII

Shor’s algorithm: breaking the
Internet

121 / 133

Shor’s algorithm and factoring
• Shor’s algorithm is, probably, the most famous quantum

algorithm
• It finds a factor of a n-bit integer in time

O(n2(log n)(log log n))
• The best classical algorithm that we know of for the same

task needs time O(ecn
1
3 (log n)

2
3)

• Dramatic consequences for current cryptography (RSA)

Image credits: Jose-Luis Olivares/MIT 122 / 133

Steps of Shor’s algorithm

1 Given N, check that N is not a prime or power of a prime. If
it is, stop.

2 Choose 1 < a < N at random
3 If b = gcd(a,N) > 1, output b and stop
4 Find the order of a mod N, that is, r > 0 such that ar ≡ 1

mod N
5 If r is odd, go to 2
6 Compute

x = a
r
2 + 1 mod N

y = a
r
2 − 1 mod N

7 If x = 0, go to 2. If y = 0, take r = r
2 and go to 5.

8 Compute p = gcd(x ,N) and q = gcd(y ,N). At least one of
them will be a non-trivial factor of N

123 / 133

Correctness of Shor’s algorithm

• We know that
ar ≡ 1 mod N

• Thus

x · y ≡ (a
r
2 + 1)(a

r
2 − 1) ≡ (ar − 1) ≡ 0 mod N

• This means that x · y is a multiple of N
• Since neither x nor y are multiples of N, either p or q

divides N
• It can be proved that step 8 will be reached with high

probability

124 / 133

Implementation of Shor’s algorithm

• Every step but number 4 are carried out on a classical
computer (efficient algorithms exist)
• For step 4, there exists a quantum circuit with a number of

gates that is polynomial on n (the number of bits of N)

|0〉 H · · · •

QFT†m

...
...

...

|0〉 H • · · ·

|0〉 H • · · ·

|1〉 /n Ua20
Ua21 · · · Ua2m−1

125 / 133

Preparing a periodic sequence

• The first part of the circuit computes

1√
2m

2m−1∑
x=0

|x〉 |ax mod N〉

• When we measure the bottom qubits, we obtain

1√
|C|

∑
x∈C

|x〉 |c〉

where c is some value in {0, . . . ,N − 1} and C = {x : ax

mod N = c}.

126 / 133

Preparing a periodic sequence (2)

• For example, if a = 2, N = 5, m = 4, we would have

1
4
(|0〉 |1〉+ |1〉 |2〉+ |2〉 |4〉+ |3〉 |3〉+ |4〉 |1〉+ . . .+ |15〉 |3〉)

and when we measure we could obtain, for instance

1
2
(|1〉 |2〉+ |5〉 |2〉+ |9〉 |2〉+ |13〉 |2〉)

• Notice that the values of the first register are exactly 4 units
apart and that 24 = 1 mod 5.
• In general, we will obtain values that are r units apart,

where ar = 1 mod N.

127 / 133

Measuring the period
• To retrieve the period r we use the (inverse) of the

Quantum Fourier Transform (QFT)
• Two properties of the QFT are central here:

• Shift-invariance (up to an unobservable phase)
• QFT transforms sequences with period r into sequences

with period M
r (where M = 2m)

• After the use of the inverse QFT, we can measure a value
of the form Mc

r with high probability and, from it, obtain r

Image credits: Umesh Vazirani
128 / 133

Quantum Fourier Transform: definition and circuit
• The QFT of order m is the unitary transformation defined

by

QFT |j〉 = 1√
2m

2m−1∑
k=0

e
2πijk
2m |k〉

• The circuit in the figure implements the QFT
• The Rk gates in the circuit are what we call RZ (

2π
2k)

• The number of gates is quadratic in m, an exponential
speed-up over the classical case (FFT)
• For Shor, m can be chosen to be about 2n

Image credits: Jurgen Van Gael

129 / 133

Using the QFT for phase estimation

• Suppose we are given a unitary operation U and one of its
eigenvectors |ψ〉
• We know that there exists θ ∈ [0,1) such that U |ψ〉 = e2πiθ

• We can estimate θ with the circuit shown below
• With the first part, we will obtain 1√

2n

∑2n−1
k=0 e2πiθk |k〉

• By using the inverse QFT we can measure j ≈ 2nθ

Image credits: Wikipedia

130 / 133

Shor’s algorithm as a particular case of quantum
phase estimation

• Clearly, the circuit used in Shor’s algorithm is a case of
quantum phase estimation
• It can be shown that the (unitary) operation of modular

mutiplication by a has eigenvalues

e2πi k
r k = 0, . . . , r − 1

where r is the period of a
• It is not easy to prepare one of the eigenvectors |ψk 〉 of the

unitary operation
• But we use the fact that

|1〉 = 1√
r

r−1∑
k=0

|ψk 〉

• We will then measure a value close to 2mk
r for some k

131 / 133

Using quantum phase estimation to count the number
of marked elements

• We can use Grover’s algorithm together with the QFT to
count the number of elements marked by a boolean
function
• The eigenvalues of Grover’s operator are e±2iθ where

sin θ =
√

k
N

• Then, with quantum phase estimation we can recover k ,
the number of marked elements

Image credits: Wikipedia

132 / 133

HHL: Applying quantum phase estimations to solve
linear systems of equations

• A quantum algorithm proposed in 2009 by Harrow,
Hassidim and Lloyd can be used to solve linear systems of
equations
• The main steps of the algorithm are

• Computation of the eigenvalues (quantum phase
estimation)

• Inversion of the eigenvalues
• Uncomputation of the eigenvalues (inverse of quantum

phase estimation)

Image credits: Niel de Beaudrap
133 / 133

	Introduction: quantum computing... the end of the world as we know it?
	One-qubit systems: one qubit to rule them all
	The BB84 protocol: Alice and Bob's hotline
	Two-qubit systems: more than the sum of their parts
	The CHSH game: Nature isn't classical, dammit
	Quantum teleportation and superdense coding: entangled up in blue
	Deutsch's algorithm: the grandfather of all quantum algorithms
	Multiqubit systems: growing up!
	Everything you always wanted to know about quantum parallelism but were afraid to ask
	The Deutsch-Jozsa algorithm: a very fast way of solving a problem that nobody asked to solve
	Grover's algorithm: finding the needle in the haystack
	Shor's algorithm: breaking the Internet

