
A Practical Introduction to Quantum
Computing: From Qubits to Quantum

Machine Learning and Beyond

Elı́as F. Combarro
combarro@gmail.com

CERN openlab (Geneva, Switzerland) - University of Oviedo (Oviedo, Spain)

CERN - November/December 2020

mailto:combarro@gmail.com

Part I

Introduction: quantum computing...
the end of the world as we know it?

2 / 251

I, for one, welcome our new quantum overlords

Image credits: sciencenews.org

3 / 251

Philosophy of the course

Image credits: Modified from an Instagram image by Bob MacGuffie

4 / 251

Tools and resources
• Jupyter Notebooks

• Web application to create and execute notebooks that
include code, images, text and formulas

• They can be used locally (Anaconda) or in the cloud
(mybinder.org, Google Colab...)

• IBM Quantum Experience
• Free online access to quantum simulators (up to 32 qubits)

and actual quantum computers (1, 5 and 15 qubits) with
different topologies

• Programmable with a visual interface and via different
languages (python, qasm, Jupyter Notebooks)

• Launched in May 2016
• https://quantum-computing.ibm.com/

Image credits: IBM 5 / 251

https://quantum-computing.ibm.com/

Tools and resources (2)

• Quirk
• Online simulator (up to 16 qubits)
• Lots of different gates and visualization options
• http://algassert.com/quirk

• D-Wave Leap
• Access to D-Wave quantum computers
• Ocean: python library for quantum annealing
• Problem specific (QUBO, Ising model...)
• https://www.dwavesys.com/take-leap

6 / 251

http://algassert.com/quirk
https://www.dwavesys.com/take-leap

The shape of things to come

Image credits: Created with wordclouds.com

7 / 251

What is quantum computing?

Quantum computing
Quantum computing is a computing paradigm that exploits
quantum mechanical properties (superposition, entanglement,
interference...) of matter in order to do calculations

Image credits: Erik Lucero

8 / 251

Models of quantum computing
• There are several models of quantum computing (they’re

all equivalent)
• Quantum Turing machines
• Quantum circuits
• Measurement based quantum computing (MBQC)
• Adiabatic quantum computing
• Topological quantum computing

• Regarding their computational capabilities, they are
equivalent to classical models (Turing machines)

Image credits: Getty Images
9 / 251

Quantum and classical computational complexity

Image credits: wikipedia.org

10 / 251

What technologies are used to build quantum
computers?

Image credits: Graphic by C. Bickle/Science data by Gabriel Popkin

11 / 251

What is a quantum computer like?

Image credits: IBM

The Sounds of IBM: IBM Q
12 / 251

https://www.youtube.com/watch?v=o-FyH2A7Ed0

Programming a quantum computer
• Different frameworks and programming languages:

• qasm
• Qiskit (IBM)
• Cirq (Google)
• Forest/pyqil (Rigetti)
• Q# (Microsoft)
• Ocean (D-Wave)
• ...

• Most of them for quantum circuit specification

Image credits: IBM

13 / 251

What are the elements of a quantum circuit?

• Every computation has three elements: data, operations
and results
• In quantum circuits:

• Data = qubits
• Operations = quantum gates (unitary transformations)
• Results = measurements

Image credits: Adobe Stock

14 / 251

Part II

One-qubit systems: one qubit to
rule them all

15 / 251

What is a qubit?
• A classical bit can take two different values (0 or 1). It is

discrete.
• A qubit can “take” infinitely many different values. It is

continuous.
• Qubits live in a Hilbert vector space with a basis of two

elements that we denote |0〉 y |1〉.
• A generic qubit is in a superposition

|ψ〉 = α |0〉+ β |1〉
where α and β are complex numbers such that

|α|2 + |β|2 = 1

Image credits: https://prateekvjoshi.com/ 16 / 251

Measuring a qubit
• The way to know the value of a qubit is to perform a

measurement. However
• The result of the measurement is random
• When we measure, we only obtain one (classical) bit of

information
• If we measure the state |ψ〉 = α |0〉+ β |1〉 we get 0 with

probability |α|2 and 1 with probability |β|2.
• Moreover, the new state after the measurement will be |0〉

or |1〉 depending of the result we have obtained
(wavefunction colapse)
• We cannot perform several independent measurements of
|ψ〉 because we cannot copy the state (no-cloning
theorem)

17 / 251

What are quantum gates?

• Quantum mechanics tells us that the evolution of an
isolated state is given by the Schrödinger equation

• In the case of quantum circuits, this implies that the
operations that can be carried out are given by unitary
matrices. That is, matrices U of complex numbers verifying

UU† = U†U = I

where U† is the conjugate transpose of U.
• Each such matrix is a possible quantum gate in a quantum

circuit

18 / 251

Reversible computation
• As a consequence, all the operations have an inverse:

reversible computing
• Every gate has the same number of inputs and outputs
• We cannot directly implement some classical gates such

as or , and , nand , xor ...
• But we can simulate any classical computation with small

overhead
• Theoretically, we could compute without wasting energy

(Landauer’s principle, 1961)

Image credits: wikipedia.org 19 / 251

One-qubit gates

• When we have just one qubit |ψ〉 = α |0〉+ β |1〉, we usually

represent it as a column vector
(
α
β

)
• Then, a one-qubit gate can be identified with a matrix

U =

(
a b
c d

)
that satisfies(

a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
where a,b, c,d are the conjugates of complex numbers
a,b, c,d .

20 / 251

Action of a one-qubit gate

• A state |ψ〉 = α |0〉+ β |1〉 is transformed into(
a b
c d

)(
α
β

)
=

(
aα + bβ
cα + dβ

)
that is, into the state |ψ〉 = (aα + bβ) |0〉+ (cα + dβ) |1〉
• Since U is unitary, it holds that

|(aα + bβ)|2 + |(cα + dβ)|2 = 1

21 / 251

The X or NOT gate

• The X gate is defined by the (unitary) matrix(
0 1
1 0

)
• Its action (in quantum circuit notation) is

|0〉 X |1〉

|1〉 X |0〉

that is, it acts like the classical NOT gate
• On a general qubit its action is

α |0〉+ β |1〉 X β |0〉+ α |1〉

22 / 251

The Z gate

• The Z gate is defined by the (unitary) matrix(
1 0
0 −1

)
• Its action is

|0〉 Z |0〉

|1〉 Z − |1〉

23 / 251

The H or Hadamard gate

• The H or Hadamard gate is defined by the (unitary) matrix

1√
2

(
1 1
1 −1

)
• Its action is

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2

• We usually denote

|+〉 :=
|0〉+ |1〉√

2

and
|−〉 :=

|0〉 − |1〉√
2

24 / 251

Other important gates

• Y gate (
0 −i
i 0

)
• S gate (

1 0
0 ei π2

)
• T gate (

1 0
0 ei π4

)
• The gates X , Y and Z are also called, together with the

identity, the Pauli gates. An alternative notation is σX , σY ,
σZ .

25 / 251

The Bloch sphere

• A common way of representing the state of a qubit is by
means of a point in the surface of the Bloch sphere
• If |ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1 we can find angles
γ, δ, θ such that

α = eiγ cos
θ

2

β = eiδ sin
θ

2
• Since an overall phase is physically irrelevant, we can

rewrite
|ψ〉 = cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

26 / 251

The Bloch sphere (2)
• From |ψ〉 = cos θ2 |0〉+ eiϕ sin θ

2 |1〉 we can obtain spherical
coordinates for a point in R3

(sin θ cosϕ, sin θ sinϕ, cos θ)

Image credits: wikipedia.org
27 / 251

Rotation gates

• We can define the following rotation gates

RX (θ) = e−i θ2 X = cos
θ

2
I − i sin

θ

2
X =

(
cos θ2 −i sin θ

2
−i sin θ

2 cos θ2

)

RY (θ) = e−i θ2 Y = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ2 − sin θ

2
sin θ

2 cos θ2

)

RZ (θ) = e−i θ2 Z = cos
θ

2
I−i sin

θ

2
Z =

(
e−i θ2 0

0 ei θ2

)
≡
(

1 0
0 eiθ

)
• Notice that RX (π) ≡ X , RY (π) ≡ Y , RZ (π) ≡ Z ,

RZ (π2) ≡ S, RZ (π4) ≡ T

28 / 251

Using rotation gates to generate one-qubit gates

• For any one-qubit gate U there exist a unit vector
r = (rx , ry , rz) and an angle θ such that

U ≡ e−i θ2 r ·σ = cos
θ

2
I − i sin

θ

2
(rxX + ryY + rzZ)

• For instance, choosing θ = π and r = (1√
2
,0, 1√

2
) we can

see that
H ≡ e−i θ2 r ·σ = −i

1√
2

(X + Z)

• Additionally, it can also be proved that there exist angles α,
β and γ such that

U ≡ RZ (α)RY (β)RZ (γ)

29 / 251

Inner product, Dirac’s notation and Bloch sphere

• The inner product of two states |ψ1〉 = α1 |0〉+ β1 |1〉 and
|ψ2〉 = α2 |0〉+ β2 |1〉 is given by

〈ψ1|ψ2〉 =
(
α1 β1

)(α2
β2

)
= α1α2 + β1β2

• Notice that 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0
• This allows us to compute

〈ψ1|ψ2〉 =
(
α1 〈0|+ β1 〈1|

)
(α2 |0〉+ β2 |1〉)

= α1α2 〈0|0〉+ α1β2 〈0|1〉+ β1α2 〈1|0〉+ β1β2 〈1|1〉
= α1α2 + β1β2

• Orthogonal states are antipodal on the Bloch sphere

30 / 251

Hello, quantum world!

• Our very first quantum circuit!

|0〉 H

• After applying the H gate the qubit state is

|0〉+ |1〉√
2

• When we measure, we obtain 0 or 1, each with 50%
probability: we have a circuit that generates perfectly
uniform random bits!

31 / 251

Part III

The BB84 protocol: Alice and Bob’s
hotline

32 / 251

One-time pad: a Catch-22 situation

• Alice wants to send Bob a message m without Eve being
able to learn anything about its content
• This can be achieved if Alice and Bob share in advance a

string k of random bits:
• Alice computes x = m ⊕ k and sends x to Bob
• Eve cannot learn anything from x

(Pr(M = m|X = x) = Pr(M = m))
• But Bob can recover m by computing x ⊕ k

• The main problem is that k has to be as long as m and
cannot be reused so... how to agree on k?

Image credits: nullprogram.com

33 / 251

The problem of key distribution
• Alice and Bob may share several keys for later use when

they are together
• But... what if they cannot meet each other?
• There exist key distribution methods like the Diffie-Hellman

protocol but...
• They are not unconditionally secure (they usually rely on

hardness assumptions)
• In fact, DH can be broken with quantum computers!

34 / 251

BB84: Alice’s part

• In 1984, Charles Bennett and Gilles Brassard proposed
the first protocol for quantum key distribution (QKD)
• Alice generates a (private) string of random bits
• She could even do this with a quantum computer (H gate +

measure)
• Then, for each bit she randomly chooses if she encodes it

in the {|0〉 , |1〉} basis or in the {|+〉 , |−〉} basis (remember
that |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉))

• She can easily do this by using H and X gates (recall that
H |0〉 = |+〉 ,H |1〉 = |−〉 ,X |0〉 = |1〉 ,X |1〉 = |0〉)
• Alice sends the resulting qubits to Bob (through a quantum

but not necessarily secure channel)

35 / 251

BB84: Bob’s part

• Each time Bob receives a qubit, he randomly decides
whether he will measure it in the {|0〉 , |1〉} basis or in the
{|+〉 , |−〉} basis
• He does this by applying (or not) the H gate before

measuring
• He writes down the results and the basis he used:

• If he used {|0〉 , |1〉} he writes down 0 if he gets |0〉 and 1 if
he gets |1〉

• If he used {|+〉 , |−〉} he writes down 0 if he gets |+〉 and 1
if he gets |−〉

36 / 251

BB84: Alice and Bob on the phone

• After this process, Alice and Bob talk on a classical
channel (authenticated but not necessarily secure)
• Bob announces the bases he has used for the

measurements and Alice announces the bases she used
to code the bits
• Bob does NOT announce the results of his measurements
• For those bits in which Bob measured with the same basis

that Alice used for coding, he has got the bit that Alice
intended to send
• The rest are discarded (they will keep about half of the bits)

37 / 251

BB84: The protocol in an image

Image credits: A. Carrasco-Casado, V. Fernández, N. Denisenko

38 / 251

Eve tries to intercept and resend...

• Imagine Eve has access to the qubits that Alice sends to
Bob
• Eve could try to measure and resend the qubit to Bob
• It is imposible for Eve to distinguish the four possibilities
{|0〉 , |1〉 , |+〉 , |−〉} because she does not know the basis
that Alice has chosen
• If Eve chooses a basis at random, she will make an error

half of the time and Alice and Bob may detect it (by sharing
some of the bits of the key to check that they are equal)
• Eve cannot copy the qubits and wait to check the basis that

Alice and Bob have used (no cloning theorem)
• Other more complex attacks are possible, but can be

shown to fail

39 / 251

Information reconciliation and privacy amplification
• Because of imperfections in the channel and devices or

because of eavesdropping, some of the bits that Alice and
Bob have may be different
• They can conduct a process of information reconciliation

(for instance, with the cascade protocol)
• After this phase (or even before), some information may

have leaked to Eve
• Alice and Bob can perform privacy amplification (for

instance, with randomness extractors)

Image credits: hikingandcoding.wordpress.com

40 / 251

QKD at CERN

Image credits: https://arxiv.org/pdf/1203.4940.pdf

41 / 251

Kak’s three-stage protocol
• Proposed by Kak in 2006
• It needs an authenticated quantum channel
• Suppose Alice wants to send |x〉 ∈ {|0〉 , |1〉} to Bob:

• Alice chooses θA at random and sends RY (θA) |x〉 to Bob
• Bob choose θB at random and sends RY (θB)RY (θA) |x〉

back to Alice
• Alice applies RY (−θA) and sends

RY (−θA)RY (θB)RY (θA) |x〉 = RY (θB) |x〉
to Bob

• Bob can now recover |x〉 by applying RY (−θB)

Image credits: wikipedia.org

42 / 251

The quantum one-time pad

• The analagous of the one-time pad with quantum
operations would be to choose a ∈ {0,1} at random and
encode |x〉 ∈ {|0〉 , |1〉} as

X a |x〉 = |x ⊕ a〉

• This cannot be extended to general qubits |ψ〉 because
X |+〉 = |+〉 and X |−〉 ≡ |−〉
• We need to choose two bits a and b at random and encode
|ψ〉 as

Z bX a |ψ〉

• Bob can now recover |ψ〉 by applying X aZ b

• It can be proved that this is unconditionally secure
• The QOTP is the basis of some blind quantum computing

protocols

43 / 251

Other protocols that use independent qubits
• The use of independent qubits does not fully exploit the

possibilities of quantum information, but there are some
additional interesting applications
• For instance:

• Other QKD protocols: B92, SARG04, Six-state protocol...
• The concept of quantum money (Wiesner)
• The Elitzur-Vaidman bomb tester
• Quantum position verification
• One-qubit classifier

Image credits: The American Association for the Advancement of Science
44 / 251

Part IV

Two-qubit systems: more than the
sum of their parts

45 / 251

Working with two qubits

• Each of the qubits can be in state |0〉 or in state |1〉
• So for two qubits we have four possibilities:

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉

that we also denote

|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉

or
|00〉 , |01〉 , |10〉 , |11〉

• Of course, we can have superpositions so a generic state
is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉
where αxy are complex numbers such that

1∑
x ,y=0

|αxy |2 = 1

46 / 251

Measuring a two-qubit system

• Suppose we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• If we measure both qubits, we will obtain:
• 00 with probability |α00|2 and the new state will be |00〉
• 01 with probability |α01|2 and the new state will be |01〉
• 10 with probability |α10|2 and the new state will be |10〉
• 11 with probability |α11|2 and the new state will be |11〉

• It is an analogous situation to what we had with one qubit,
but now with four possibilities

47 / 251

Measuring just one qubit in a two-qubit system

• If we have a state

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

we can also measure just one qubit
• If we measure the first qubit (for the second one is

analogous):
• We will get 0 with probability |α00|2 + |α01|2
• In that case, the new state of |ψ〉 will be

α00 |00〉+ α01 |01〉√
|α00|2 + |α01|2

• We will get 1 with probability |α10|2 + |α11|2
• In that case, the new state of |ψ〉 will be

α10 |10〉+ α11 |11〉√
|α10|2 + |α11|2

48 / 251

Two-qubit states and vector representation

• A general two-qubit quantum state is

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

• We can represent with the column vector
α00
α01
α10
α11

• We can compute inner products by noticing that

〈00|00〉 = 〈01|01〉 = 〈10|10〉 = 〈11|11〉 = 1

〈00|01〉 = 〈00|10〉 = 〈00|11〉 = · · · = 〈11|00〉 = 0

• A two-qubit quantum gate is a unitary matrix U of size 4×4

49 / 251

Tensor product of one-qubit gates

• The simplest way of obtaining a two-qubit gate is by having
a pair of one-qubit gates A and B acting on each of the
qubits
• In this case, the matrix for the two-qubit gate is the tensor

product A⊗ B
• It holds that

(A⊗ B)(|ψ1〉 ⊗ |ψ2〉) = (A |ψ1〉)⊗ (B |ψ2〉)

• Of course, either A or B may be the identity
• This does NOT exhaust all posible two-qubit gates

Image credits: wikipedia.org

50 / 251

The CNOT gate

• The CNOT (or controlled-NOT or cX) gate is given by the
(unitary) matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

• If the first qubit is |0〉, nothing changes. If it is |1〉, we flip

the second bit (and the first stays the same)
• That is:

|00〉 → |00〉 |01〉 → |01〉

|10〉 → |11〉 |11〉 → |10〉

51 / 251

Action of the CNOT gate

• Its action on x , y ∈ {0,1} is, then:

|x〉 • |x〉
|y〉 |y ⊕ x〉

• This is an extremely important gate for it allows to:
• Create entanglement (more on this soon)
• Copy classical information, because:

|00〉 → |00〉

|10〉 → |11〉
• Construct other controlled gates

52 / 251

Equivalences with CNOT gates

• Sometimes, CNOT gates are not implemented between all
pairs of qubits in a quantum computer
• We can use H gates to change the control and target of a

CNOT gate

H • H

H H

• We can swap states using three CNOT gates

• •

•

53 / 251

Constructing controlled gates by using the CNOT gate

• Any one-qubit gate U can be decomposed in the form

eiθAXBXC

with ABC = I
• Then, the circuit

• • RZ (θ)

C B A

implements a U gate on the lower qubit controlled by the
upper qubit

54 / 251

The no-cloning theorem

• There is no quantum gate that makes copies of an
arbitrary (unknown) qubit
• The proof is easy: suppose we have a gate U such that

U |ψ〉 |0〉 = |ψ〉 |ψ〉
• Then U |00〉 = |00〉 and U |10〉 = |11〉 and by linearity

U
(1√

2
(|00〉+|10〉)

)
=

1√
2

(U |00〉+U |10〉) =
1√
2

(|00〉+|11〉)

• But
|00〉+ |10〉√

2
=
(|0〉+ |1〉√

2

)
|0〉

so we should have

U
(|00〉+ |10〉√

2

)
=

(|0〉+ |1〉)√
2

(|0〉+ |1〉)√
2

6= 1√
2

(|00〉+ |11〉)

55 / 251

Quantum entanglement: the spooky action at a
distance

• We say that a state |ψ〉 is a product state if it can be written
in the form

|ψ〉 = |ψ1〉 |ψ2〉

where |ψ1〉 and |ψ2〉 are two states (of at least one qubit)
• An entangled state is a state that is not a product state
• Example of entangled states (Bell states):

|00〉+ |11〉√
2

|00〉 − |11〉√
2

|01〉+ |10〉√
2

|01〉 − |10〉√
2

56 / 251

Hello, entangled world!

• We can construct (and measure) Bell states with simple
circuits

|0〉 H •

|0〉

• Initially, the state of the system is |00〉
• After we apply the H gate, the state is

|00〉+ |10〉√
2

• When we apply the CNOT gate, the state changes to

|00〉+ |11〉√
2

57 / 251

Hello, entangled world!

|0〉 H •

|0〉

• Before we measure the first qubit, we have the state
|00〉+|11〉√

2

• We will get 0 or 1, each with probability 1
2

• Suppose we obtain 0. Then, the new state will be |00〉
• Then, when we measure the second qubit we will obtain 0

with probability 1!
• Also, if we obtain 1 in the first qubit, in the second we will

also obtain 1!

58 / 251

Part V

The CHSH game: Nature isn’t
classical, dammit

59 / 251

The CHSH game

• Based in an inequality proposed in 1969 by Clauser,
Horne, Shimony and Holt based on previous work by John
Bell
• Alice and Bob receive bits x and y from a referee
• They have to respond with bits a and b
• They win if

a⊕ b = x · y
• They can decide on a joint strategy beforehand, but they

cannot communicate during the game

Image credits: quantumcomputing.stackexchange.com

60 / 251

Classical strategies for the CHSH game

• Alice and Bob can win 75% of the time if they always
answer ‘0’
• No other deterministic strategy can do better
• And probabilistic strategies are convex combinations of

classical strategies so they cannot improve the 75%
success rate

Image credits: Ryan O’Donnell

61 / 251

Quantum strategy for the CHSH game

• Alice and Bob share a Bell pair |00〉+|11〉√
2

before the start of
the game
• If Alice receives 0, she measures her qubit and ouputs the

result
• If she receives 1, she applies RY (π2) to her qubit and then

she measures it
• If Bob receives 0, he applies RY (π4). Else, he applies

RY (−π
4).

• Then, he measures his qubit
• The probability of winning is now cos2(π8) ≈ 0.85 > 0.75

|0〉 H • RY (π2)

|0〉 RY (π4)

62 / 251

Some comments on the CHSH game

• It can be proved that cos2(π8) is the highest possible
success rate for a quantum strategy (Tsirelson’s bound)
• The CHSH game can be used to rule out local realism
• Several experiments have been conducted, including:

• Aspect et al. (1981-82)
• Hensen et al. (2005) - Eliminate the locality and detection

loopholes
• All of them agree with the predictions of quantum theory

Image credits: George Stamatiou based on png file of C.Thompson

63 / 251

The GHZ game

• Introduced by Greenberger, Horne and Zeilinger
• A referee selects rst from {000,011,101,110} and sends r

to Alice, s to Bob and t to Charlie
• They produce a, b and c and win if

a⊕ b ⊕ c = r ∨ s ∨ t

• Classically, they can only win with 75% probability
• Quantumly, they can win every single time

• They share the state

1
2

(|000〉 − |011〉 − |101〉 − |110〉)

• They apply H to their qubit if the receive 1
• They measure and return the answer

• This is sometimes called “quantum pseudo-telepathy”
(Brassard, Cleve, Tapp)
• Both the CHSH and the GHZ game can be used for

randomness certification (and expansion)
64 / 251

Part VI

Quantum teleportation and
superdense coding: entangled up in

blue

65 / 251

Quantum teleportation: Quantum me up, Scotty!

• Can Alice sent a qubit |ψ〉 to Bob it there is no quantum
channel available?
• We are interested in the most general case, even if Alice

does not know which state she has
• The problem can be solved if Alice and Bob share an

entangled state 1√
2

(|00〉+ |11〉)

Image credits: www.geeksaresexy.net

66 / 251

Quantum teleportation: Alice’s part
• Alice and Bob share an entangled state 1√

2
(|00〉+ |11〉)

• This can be done in advance
• Or they can rely on a source that distributes entangled pairs

• Alice applies a CNOT gate to the qubit she wants to
teleport |ψ〉 = a |0〉+ b |1〉 and to her part of the Bell pair.
We will have

1√
2

(a(|000〉+ |011〉) + b(|110〉+ |101〉))

• Alice further applies the H gate to the qubit she wants
teleported. Then, we have

1
2
(
|00〉 (a |0〉+ b |1〉) + |01〉 (b |0〉+ a |1〉)

+ |10〉 (a |0〉 − b |1〉) + |11〉 (−b |0〉+ a |1〉)
)

• Alice measures her two qubits and sends the result (two
classical bits) to Bob (through a classical channel)

67 / 251

Quantum teleportation: Bob’s part

• Bob uses the second bit received from Alice to decide if he
applies X to his qubit
• And he uses the first bit to decide if he applies Z

Image credits: ProjectQ

68 / 251

Quantum teleportation: some comments

• It is not matter that is teleported but information
• When Alice measure her qubit, she looses it (if not, we

would be contradicting the no-cloning theorem)
• To teleport a qubit, we need two classical bits and one

entangled pair:

2bits + 1ebit ≥ 1qubit

• Teleportation is not instantaneous, we need classical
communication (no-communication theorem)
• Quantum teleportation has been shown experimentally

(current record is 1,400 km)
• Demonstration of quantum teleportation in Quirk

69 / 251

https://bit.ly/2KdXHdy

Entanglement swapping
• Quantum teleportation can also be used with entangled

qubits
• Alice shares a Bell pair with Bob and another one with

Charlie
• In the figure, the top and bottom qubits belong to Alice.

The second from the top belongs to Bob and the other to
Charlie
• Alice teleports her top qubit to Charlie
• Now Bob’s and Charlie’s qubits are entangled (although

maybe they were never in direct contact)

Image credits: Created with Quirk. Click here to access the circuit

70 / 251

https://bit.ly/3kAT4qq

Gate teleportation

• We can generalize the idea of quantum teleportation to
teleport the action of gates
• With the circuit of the figure, we can apply gate U to an

arbitrary state |ψ〉
• This is useful if preparing 1√

2
(|0〉U |0〉+ |1〉U |1〉) and

applying UXU†,UZU†,UZXU† are easy compared to
applying U to a general qubit
• Such a situation can happen when U = T in the context of

fault-tolerant quantum computing

|ψ〉 • H •

|0〉 H • •

|0〉 U U† Z U

71 / 251

Superdense coding: two for the price of one (more or
less)

• As we have seen, in the presence of a Bell pair, we can
send a qubit with just two classical bits
• But... how many classical bits can we communicate with

one qubit?
• Holevo’s bound: the accesible information of one qubit is

just one bit
• However, if Alice and Bob share in advance a Bell pair...

we can send two bits of information with just one qubit!

1qubit + 1ebit ≥ 2bits

• This protocol is, in some sense, the inverse of quantum
teleportation

72 / 251

Superdense coding: Alice’s part

• Alice and Bob share a Bell pair in advance 1√
2

(|00〉+ |11〉)
• Alice wants to send to Bob two classical bits b1 and b2

• If b2 = 1, she applies X to her qubit
• If b1 = 1, she applies Z to her qubit
• Then, she sends her qubit to Bob

Image credits: www.quantum-bits.org

73 / 251

Superdense coding: Bob’s part

• Bob receives Alice’s qubit
• He applies a CNOT gate controlled by Alice’s qubit
• He applies H to Alice’s qubit
• He measures and recovers b1 and b2

Image credits: www.quantum-bits.org

74 / 251

Superdense coding: an example

• Suppose Alice wants to send 11
• We start with 1√

2
(|00〉+ |11〉)

• After Alice’s operations, we will have 1√
2

(|01〉 − |10〉)
• When Bob applies CNOT he obtains

1√
2

(|01〉 − |11〉) =
1√
2

(|0〉 − |1〉) |1〉

• And with the H gate he gets |11〉 that now he can measure

75 / 251

Part VII

Deutsch’s algorithm: the
grandfather of all quantum

algorithms

76 / 251

Deutsch’s algorithm: statement of the problem
• In 1985, David Deutsch proposed a very simple algorithm

that, nevertheless, hints at the capabilities of quantum
computing
• The problem it solves is only of theoretical relevance and

was later generalized in a joint work with Jozsa
• We are given a circuit (an oracle) that implements a

one-bit boolean function and we are asked to determine
whether the function is constant (returns the same value
for all inputs) or balanced (returns 1 on one input and 0 on
the other)
• Alternatively, we can think of the oracle as indexing a bit

string of length two and we are asked to compute the XOR
of the bits of the string
• In the classical case, we would need to consult the oracle

twice, to compute both values of the function
• In the quantum case, we can make just one oracle call...

but in superposition
77 / 251

Deutsch’s algorithm: the oracle

• An oracle is treated as a black box, a circuit whose interior
we cannot know
• This circuit computes, in a reversible way, a certain

function f (in our case, of just one input)
• For the computation to be reversible, it uses as many

inputs as outputs and “writes the result” with an XOR

|x〉
Of

|x〉
|y〉 |y ⊕ f (x)〉

78 / 251

Deutsch’s algorithm: the circuit

• The quantum circuit that we need to use to solve the
problem is very simple

|0〉 H
Of

H

|1〉 H

• If the function is constant, we will measure 0
• If the function is balanced, we will measure 1

79 / 251

Deutsch’s algorithm: the magic

|0〉 H
Of

H

|1〉 H

• The initial state is |0〉 |1〉
• After the H the gates we have

(|0〉+ |1〉)(|0〉 − |1〉)
2

which is the same as

|0〉 (|0〉 − |1〉)
2

+
|1〉 (|0〉 − |1〉)

2
• When we apply the oracle, by linearity we obtain

|0〉 (|0⊕ f (0)〉 − |1⊕ f (0)〉)
2

+
|1〉 (|0⊕ f (1)〉 − |1⊕ f (1)〉)

2

80 / 251

Deutsch’s algorithm: the magic (2)

|0〉 H
Of

H

|1〉 H

• If f (0) = 0, we have

|0⊕ f (0)〉 − |1⊕ f (0)〉 = |0〉 − |1〉

• However, if f (0) = 1 we get

|0 + f (0)〉−|1⊕ f (0)〉 = |0⊕ 1〉−|1⊕ 1〉 = |1〉−|0〉 = −(|0〉−|1〉)

• For f (1) the situation is the same so the global state is

(−1)f (0) |0〉 (|0〉 − |1〉)
2

+
(−1)f (1) |1〉 (|0〉 − |1〉)

2

81 / 251

Deutsch’s algorithm: the magic (3)

|0〉 H
Of

H

|1〉 H

• We can also write that state as

|0〉 (|0〉 − |1〉)
2

+
(−1)f (0)+f (1) |1〉 (|0〉 − |1〉)

2
• So if f (0) = f (1), we will have

|0〉 (|0〉 − |1〉)
2

+
|1〉 (|0〉 − |1〉)

2
=

(|0〉+ |1〉)(|0〉 − |1〉)
2

and when we apply the last H and measure we obtain 0.
• But if f (0) 6= f (1), the state is

|0〉 (|0〉 − |1〉)
2

− |1〉 (|0〉 − |1〉)
2

=
(|0〉 − |1〉)(|0〉 − |1〉)

2
and, then, we obtain 1.

82 / 251

Deutsch’s algorithm: some comments

• When we apply the oracle we have a phase kickback: we
only act on one qubit, but it affects the whole state
• Deutch’s algorithm exploits an interference phenomenon

similar to that found in some physical experiments
(double-slit experiment, Mach-Zehnder interferometer)

Image credits: Wikipedia

83 / 251

Part VIII

Multiqubit systems: growing up!

84 / 251

n-qubit systems

• When he have n qubits, each of them can be in state |0〉
and |1〉
• Thus, for the n-qubit state we have 2n possibilities:

|00 . . . 0〉 , |00 . . . 1〉 , . . . , |11 . . . 1〉

or simply
|0〉 , |1〉 , . . . ,

∣∣2n − 1
〉

• A generic state of the system will be

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
where αi are complex numbers such that

2n−1∑
i=0

|αi |2 = 1

85 / 251

Measuring a n-qubit state

• Suppose we have the n-qubit state

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• If we measure all its qubits, we obtain:

• 0 with probability |α0|2 and the new state will be |0 . . . 00〉
• 1 with probability |α1|2 and the new state will be |0 . . . 01〉
• . . .
• 2n − 1 with probability |α2n−1|2 and the new state will be
|1 . . . 11〉

• It is analogous to what we had with one and two qubits, but
now with 2n possibilities

86 / 251

Measuring one qubit in a n-qubit state

• We have

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• If we measure the j-th qubit

• We will get 0 with probability∑
i∈I0

|αi |2

where I0 is the set of numbers whose j-th bit is 0
• In that case, the new state |ψ〉 will be∑

i∈I0 αi |i〉√∑
i∈I0 |αi |2

• The case in which we obtain 1 is analogous

87 / 251

n-qubit quantum gates

• A n-qubit state is

|ψ〉 = α0 |0〉+ α1 |1〉+ . . .+ α2n−1
∣∣2n − 1

〉
• We can represent it by the column vector

α0
α1
α2
...

α2n−1

• To compute inner products with Dirac notation we only

need to note that
〈i |j〉 = δij

• Thus, a n-qubit quantum gate is a unitary matrix U of size
2n × 2n

88 / 251

The Toffoli gate

• The Toffoli gate (or CCNOT) is a 3-qubit gate. Thus, it can
be represented as a 8× 8 matrix
• Its action on elements x , y , z ∈ {0,1} is:

|x〉 • |x〉
|y〉 • |y〉
|z〉 |z ⊕ (x ∧ y)〉

• The Toffoli gate is universal for classical logic, and thus
any classical circuit can be simulated with a quantum
circuit
• However, the Toffoli gate, on its own, is not universal for

quantum computing (and it is not even necessary,
because it can be simulated with one and two-qubit gates)

89 / 251

Universal gates in quantum computing

• The number of quantum gates (even for a single qubit) is
uncountably infinite. Thus, no finite set of gates is universal
in the classical sense
• However, we can obtain finite sets of gates that allow us to

approximate any other gate as much as we want

Theorem
The one-qubit gates together with the CNOT gate are universal
for quantum computing

Theorem
The gates X, H, T and CNOT are universal for quantum
computing

90 / 251

Gate equivalences

Z = H X H

S = T T

Y = Z X S X S X

T † = S S S T

S† = S S S

However, Z , S, Y , S† and T † are usually included among the
available gates in most quantum computers (such as the ones

in the IBM Q Experience).

91 / 251

Equivalence of the Toffoli gate

H T † T T † T H

• • T T †

• • • T •

92 / 251

Part IX

Everything you always wanted to
know about quantum parallelism but

were afraid to ask

93 / 251

Urban legends about quantum parallelism

• But... don’t quantum computers try all 2n possibilities in
parallel?
• The answer is... yes and no (this is quantum computing

after all!)

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith

94 / 251

https://www.smbc-comics.com/comic/the-talk-3

Evaluating a function: querying the oracle

• As we know, in quantum computing every gate is reversible
• To compute a function f we keep the inputs unchanged

and xor the result to the output qubits
• This type of circuit is called and oracle for f (we have

already used an oracle for a one-bit function in Deutsch’s
algorithm)

Of

|x〉

|y〉 |y ⊕ f (x)〉

|x〉

95 / 251

Evaluating a function in parallel: the superposition
hocus-pocus

• Suppose that we have an oracle Of for a function f (x) with
a one-bit input
• We know that, using the H gate, we can put a qubit in

superposition
• If we start with the state |0〉 |0〉 and we apply H on the first

qubit, we will have

1√
2
|0〉 |0〉+

1√
2
|1〉 |0〉

• If we now apply Of , by linearity we have

1√
2
|0〉 |f (0)〉+

1√
2
|1〉 |f (1)〉

• We have evaluated the function on two different inputs with
just one call!

96 / 251

Evaluating a function in parallel: the tensor-product
abracadabra

• We can do something similar with a function
f (x1, x2, . . . , xn) on n-variables by using the following circuit

H

Of
H

H

|0〉

|0〉⊗n

• When we apply the H gates we obtain

(|0〉+ |1〉)(|0〉+ |1〉) · · · (|0〉+ |1〉) |0〉√
2n

97 / 251

Evaluating a function in parallel: the tensor-product
abracadabra (2)

• If we expand the product we get

(|0 . . . 0〉+ |0 . . . 1〉+ . . .+ |1 . . . 1〉) |0〉√
2n

=
1√
2n

2n−1∑
x=0

|x〉 |0〉

• And, when we apply the oracle, we will get the state

1√
2n

2n−1∑
x=0

|x〉 |f (x)〉

• An exponential number of function evaluations with just
one call!

H

Of
H

H

|0〉

|0〉⊗n

98 / 251

Quantum parallelism vs. non-deterministic machines

• With a non-deterministic machine, we could choose at will
some value f
• This would allow us to solve NP-complete problems
• A similar idea is used in the plot of Quarantine, a

science-fiction novel by Greg Egan

99 / 251

All that glitters ain’t gold
• And now... how do we retrieve the values f (x)?
• To obtain a result, we need to perform a measurement
• But then we will get a state of the form

|c〉 |f (c)〉
• That is, we only obtain the result of the function for a

randomly chosen input (this may be even worse than
classically evaluating the function)

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 100 / 251

https://www.smbc-comics.com/comic/the-talk-3

Interferences come to the rescue
• How can we use the 2n evaluations to extract useful

information?
• One possibility is... to produce interferences!
• The amplitudes of some states can be negative
• If we manage to “annihilitate” the amplitudes of states we

are not interested in, the probability of obtaining the
answer that we need will grow
• This is, in general, no easy task, but we know how to

achieve it in some interesting cases

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 101 / 251

https://www.smbc-comics.com/comic/the-talk-3

Part X

The Deutsch-Jozsa algorithm: a
very fast way of solving a problem

that nobody asked to solve

102 / 251

Reminder: Deutsch’s algorithm

• We have an oracle Of for a boolean function f (x)

• f can be constant (returns the same value for all inputs) or
balanced (returns 1 on one input and 0 on the other)
• Distinguishing one situation from the other requires, in the

classical case, evaluating the function on the two possible
inputs
• With a quantum computer, we can solve the problem with

just one call to Of

• The key is to use quantum parallelism together with
interference

|0〉 H
Of

H

|1〉 H

103 / 251

Upping the ante: the Deutsch-Jozsa algorithm

• The Deutsch-Jozsa algorithm solves a type of problem
called promise problem
• We are given a boolean function f (x1, . . . , xn)
• We are promised that f is either constant (always 0 or 1) or

balanced (0 for half of the inputs and 1 for the rest)
• We have to decide which of the two cases we are in by

calling the function as few times as possible
• With a classical deterministic algorithm we need (in the

worst case) 2n−1 + 1 calls to f
• With the Deutsch-Jozsa quantum algorithm it is enough to

evaluate f just once

104 / 251

Circuit for the Deutsch-Jozsa algorithm

H

Of

H

H H

H H

|1〉 H

|0〉⊗n

105 / 251

Steps in the Deutsch-Jozsa algorithm

1 We create the state |0 . . . 0〉 |1〉
2 We use Hadamard gates to create the superposition∑

x∈{0,1}n

1√
2n+1

|x〉 (|0〉 − |1〉)

3 We apply the oracle, getting∑
x∈{0,1}n

1√
2n+1

|x〉 (|0⊕ f (x)〉 − |1⊕ f (x)〉) =

∑
x∈{0,1}n

(−1)f (x)
√

2n+1
|x〉 (|0〉 − |1〉)

106 / 251

Steps in the Deutsch-Jozsa algorithm (2)

4 We apply again Hadamard gates to the n first qubits and
we obtain ∑

y∈{0,1}n

∑
x∈{0,1}n

(−1)f (x)+x ·y

2n
√

2
|y〉 (|0〉 − |1〉)

5 Finally, we measure the n first qubits.
6 If the function is constant, we will obtain |0〉. Otherwise (if

the function is balanced), we will get a string different from
|0〉.

107 / 251

Correctness of the algorithm

• The probability of measuring |0〉 is exactly ∑
x∈{0,1}n

(−1)f (x)+x ·0

2n

2

=

 ∑
x∈{0,1}n

(−1)f (x)

2n

2

• If f is constant, the sum is 1
• If f is balanced, the sum is 0

108 / 251

Some comments on the Deutsch-Jozsa algorithm

• The problem we have solved is academical, with no
practical interest
• But... it shows how quantum computing can obtain global

information about a function with just one evaluation
• The key is to use:

• Quantum parallelism (because of superposition)
• Interference (constructive and destructive)

• Similar ideas are used in other algorithms, like the
Bernstein-Vazirani and Simon methods

109 / 251

Part XI

Grover’s algorithm: finding the
needle in the haystack

110 / 251

Statement of the problem
• Grover’s algorithm is used to solve search problems
• Imagine we have an unsorted list of N elements
• One of them verifies a certain condition and we want to

find it
• Any classical algorithm requires O(N) queries to the list in

the worst case
• Grover’s algorithm can find the element with O(

√
N)

queries

Image credits: Downloaded from www.usnewsglobaleducation.com

111 / 251

The oracle

• As in Deutsch-Jozsa’s algorithm, we will use an oracle
• This oracle computes the function f : {0,1}n ⇒ {0,1} (with

N = 2n)
• The element we want to find is the one that verifies

f (x) = 1

Of
|x〉

|y〉 |y ⊕ f (x)〉

|x〉

112 / 251

The idea behind the algorithm

• Grover’s algorithm is based on the idea of inversion about
the mean

Image credits: quantumcomputing.stackexchange.com

113 / 251

Grover’s algorithm

• Grover’s algorithm performs O(
√

N) iterations, each one
consisting in an oracle query and a call to Grover’s
diffusion operator
• The oracle “marks” those states that verify the condition
• The diffusion operator “amplifies” the amplitudes of the

marked states

O(
√

N)

H

Of

H X • X H . . .

H H X • X H . . .

H H X Z X H . . .

|1〉 H . . .

|0〉⊗n

︷ ︸︸ ︷

114 / 251

Grover’s algorithm as a rotation

• Let us denote by |x1〉 the marked element
• Then, the initial state of the upper n qubits is√

N − 1
N
|x0〉+

√
1
N
|x1〉

where

|x0〉 =
∑

x∈{0,1}n,x 6=x1

√
1

N − 1
|x〉

• We can choose θ ∈ (0, π2) such that

cos θ =

√
N − 1

N
sin θ =

√
1
N

115 / 251

Grover’s algorithm as a rotation (2)

• Define D to be Grover’s diffusion operator and G = DOf

• It can be shown that G acts on the 2-dimensional space
spawned by |x0〉 and |x1〉 as a rotation of angle 2θ
• That is

G |x0〉 = cos 2θ |x0〉+ sin 2θ |x1〉

G |x1〉 = − sin 2θ |x0〉+ cos 2θ |x1〉

|x0〉 =
∑

x∈{0,1}n,x 6=x1

√
1

N − 1
|x〉

• Since the initial state is cos θ |x0〉+ sin θ |x1〉, after m
iterations we will have

cos (2m + 1)θ |x0〉+ sin (2m + 1)θ |x1〉

116 / 251

Grover’s algorithm as a rotation (3)

• In order to obtain |x1〉 with high probability when we
measure we need

(2m + 1)θ ≈ π

2
and this gives

m ≈ π

4θ
− 1

2
• Since

sin θ =

√
1
N

we will have

θ ≈
√

1
N

and then we can choose

m =
⌊π

4

√
N
⌋

117 / 251

The case with multiple marked elements

• If the number of marked elements is k > 1, a similar
argument can be made by defining

|x0〉 =
∑

f (x)=0

√
1

N − k
|x〉

|x1〉 =
∑

f (x)=1

√
1
k
|x〉

• In this case

sin θ =

√
k
N

and if k � N we can choose

m =

⌊
π

4

√
N
k

⌋
118 / 251

The case with unknown number of marked elements

• If we do not know how many elements are marked, we can
still user Grover’s algorithm
• We can use Grover’s circuit combined with the Quantum

Fourier Transform to estimate k
• Or we can choose m at random. For instance:

• Uniformly from the set {0, . . . ,
⌈√

N + 1
⌉
}

• With an incremental scheme, starting with an upper bound
for m of b = 1 and increasing it exponentially up to

√
N

• In all the cases, it can be shown that a marked element will
be found with high probability with O(

√
N) queries to the

oracle

119 / 251

Some comments on Grover’s algorithm

• When we measure, we will obtain x such that f (x) = 1 with
probability depending on:
• The number m of iterations
• The fraction of values x that satisfy the condition

• If we perform too many iterations, we can overshoot and
not find a marked element
• On the other hand, if k = N

4 then one iteration will find a
marked element with certainty
• Grover’s algorithm can be used to find minima of functions

(Dürr-Hoyer’s algorithm)
• It can be shown that no other quantum algorithm can

obtain more than a quadratic speed-up over over classical
algorithms in the same setting
• A generalization of Grover’s algorithm called Amplitude

Amplification can be used with states prepared by an
arbitrary unitary A

120 / 251

Part XII

Shor’s algorithm: breaking the
Internet

121 / 251

Shor’s algorithm and factoring
• Shor’s algorithm is, probably, the most famous quantum

algorithm
• It finds a factor of a n-bit integer in time

O(n2(log n)(log log n))
• The best classical algorithm that we know of for the same

task needs time O(ecn
1
3 (log n)

2
3)

• Dramatic consequences for current cryptography (RSA)

Image credits: Jose-Luis Olivares/MIT 122 / 251

Steps of Shor’s algorithm

1 Given N, check that N is not a prime or power of a prime. If
it is, stop.

2 Choose 1 < a < N at random
3 If b = gcd(a,N) > 1, output b and stop
4 Find the order of a mod N, that is, r > 0 such that ar ≡ 1

mod N
5 If r is odd, go to 2
6 Compute

x = a
r
2 + 1 mod N

y = a
r
2 − 1 mod N

7 If x = 0, go to 2. If y = 0, take r = r
2 and go to 5.

8 Compute p = gcd(x ,N) and q = gcd(y ,N). At least one of
them will be a non-trivial factor of N

123 / 251

Correctness of Shor’s algorithm

• We know that
ar ≡ 1 mod N

• Thus

x · y ≡ (a
r
2 + 1)(a

r
2 − 1) ≡ (ar − 1) ≡ 0 mod N

• This means that x · y is a multiple of N
• Since neither x nor y are multiples of N, either p or q

divides N
• It can be proved that step 8 will be reached with high

probability

124 / 251

Implementation of Shor’s algorithm

• Every step but number 4 are carried out on a classical
computer (efficient algorithms exist)
• For step 4, there exists a quantum circuit with a number of

gates that is polynomial on n (the number of bits of N)

|0〉 H · · · •

QFT†m

...
...

...

|0〉 H • · · ·

|0〉 H • · · ·

|1〉 /n Ua20
Ua21 · · · Ua2m−1

125 / 251

Preparing a periodic sequence

• The first part of the circuit computes

1√
2m

2m−1∑
x=0

|x〉 |ax mod N〉

• When we measure the bottom qubits, we obtain

1√
|C|

∑
x∈C

|x〉 |c〉

where c is some value in {0, . . . ,N − 1} and C = {x : ax

mod N = c}.

126 / 251

Preparing a periodic sequence (2)

• For example, if a = 2, N = 5, m = 4, we would have

1
4

(|0〉 |1〉+ |1〉 |2〉+ |2〉 |4〉+ |3〉 |3〉+ |4〉 |1〉+ . . .+ |15〉 |3〉)

and when we measure we could obtain, for instance

1
2

(|1〉 |2〉+ |5〉 |2〉+ |9〉 |2〉+ |13〉 |2〉)

• Notice that the values of the first register are exactly 4 units
apart and that 24 = 1 mod 5.
• In general, we will obtain values that are r units apart,

where ar = 1 mod N.

127 / 251

Measuring the period
• To retrieve the period r we use the (inverse) of the

Quantum Fourier Transform (QFT)
• Two properties of the QFT are central here:

• Shift-invariance (up to an unobservable phase)
• QFT transforms sequences with period r into sequences

with period M
r (where M = 2m)

• After the use of the inverse QFT, we can measure a value
of the form Mc

r with high probability and, from it, obtain r

Image credits: Umesh Vazirani
128 / 251

Quantum Fourier Transform: definition and circuit
• The QFT of order m is the unitary transformation defined

by

QFT |j〉 =
1√
2m

2m−1∑
k=0

e
2πijk
2m |k〉

• The circuit in the figure implements the QFT
• The Rk gates in the circuit are what we call RZ (2π

2k)
• The number of gates is quadratic in m, an exponential

speed-up over the classical case (FFT)
• For Shor, m can be chosen to be about 2n

Image credits: Jurgen Van Gael

129 / 251

Using the QFT for phase estimation

• Suppose we are given a unitary operation U and one of its
eigenvectors |ψ〉
• We know that there exists θ ∈ [0,1) such that U |ψ〉 = e2πiθ

• We can estimate θ with the circuit shown below
• With the first part, we will obtain 1√

2n

∑2n−1
k=0 e2πiθk |k〉

• By using the inverse QFT we can measure j ≈ 2nθ

Image credits: Wikipedia

130 / 251

Shor’s algorithm as a particular case of quantum
phase estimation

• Clearly, the circuit used in Shor’s algorithm is a case of
quantum phase estimation
• It can be shown that the (unitary) operation of modular

mutiplication by a has eigenvalues

e2πi k
r k = 0, . . . , r − 1

where r is the period of a
• It is not easy to prepare one of the eigenvectors |ψk 〉 of the

unitary operation
• But we use the fact that

|1〉 =
1√
r

r−1∑
k=0

|ψk 〉

• We will then measure a value close to 2mk
r for some k

131 / 251

Using quantum phase estimation to count the number
of marked elements

• We can use Grover’s algorithm together with the QFT to
count the number of elements marked by a boolean
function
• The eigenvalues of Grover’s operator are e±2iθ where

sin θ =
√

k
N

• Then, with quantum phase estimation we can recover k ,
the number of marked elements

Image credits: Wikipedia

132 / 251

HHL: Applying quantum phase estimations to solve
linear systems of equations

• A quantum algorithm proposed in 2009 by Harrow,
Hassidim and Lloyd can be used to solve linear systems of
equations
• The main steps of the algorithm are

• Computation of the eigenvalues (quantum phase
estimation)

• Inversion of the eigenvalues
• Uncomputation of the eigenvalues (inverse of quantum

phase estimation)

Image credits: Niel de Beaudrap
133 / 251

Visualizing Shor’s algorithm with Qirk
• Case a = 2 and N = 15
• Case a = 4 and N = 15
• Case a = 14 and N = 15
• Case a = 26 and N = 55

Image credits: Created with Quirk

134 / 251

https://bit.ly/36l0Roh
https://bit.ly/3lpUC6R
https://bit.ly/3o5PUNy
https://bit.ly/3o3aY7a

Part XIII

Quantum annealing: when time is
gold

135 / 251

The maximum cut or Max-Cut problem
• Consider the problem of dividing the vertices of a graph

into two sets such that the number of edges with extremes
in both sets is the maximum possible
• It can be proved that this problem, called “maximum cut” or

“Max-Cut”, is NP-hard
• It is also APX-Hard and thus there is no (classical)

polynomial-time approximation scheme (PTAS) which gets
arbitrarily close to the solution (unless P = NP)

Image credits: Wikipedia.org 136 / 251

Stating Max-Cut with spins

• We can identify each vertex i of the graph with a variable Zi

• We assign value 1 to the vertices of one group and -1 to
the others
• Then, if E is the set of edges, the problem can be stated as

Minimize
∑

(i,j)∈E

ZiZj

since vertices in different groups contribute -1 and vertices
of the same group contribute 1

137 / 251

Example of Max-Cut problem

• For the graph of the figure we need to minimize

H = Z1Z2 + Z1Z3

• By inspection (or enumerating the eight possibilities) it is
easy to see that the solutions are 011 and 100

138 / 251

Enter quantum computing

• Remember that the matrix of gate Z is(
1 0
0 −1

)
and that the vector |0〉 has coordinates(

1
0

)
• Then (

1 0
)(1 0

0 −1

)(
1
0

)
= 1

• Using Dirac notation, we can denote this by

〈0|Z |0〉 = 1

139 / 251

Enters quantum computing (2)

• Analogously

|1〉 =

(
0
1

)
• And thus

〈1|Z |1〉 =
(
0 1

)(1 0
0 −1

)(
0
1

)
= −1

• If we have more qubits, we evaluate each product
independently and multiply the results. For instance:

〈01|Z1Z2 |01〉 = (〈0|Z1 |0〉) · (〈1|Z2 |1〉) = 1 · (−1) = −1

and

〈101|Z1Z3 |101〉 = (〈1|Z1 |1〉) ·(〈1|Z3 |1〉) = (−1) ·(−1) = 1

140 / 251

Back to the Max-Cut example

• We had the Max-Cut problem given by

H = Z1Z2 + Z1Z3

• We can identify a possible cut with |011〉 (vertices 2 and 3
in one set and 1 in the other) and evaluate its cost by

〈011|H |011〉 = 〈011| (Z1Z2 + Z1Z3) |011〉
= 〈011|Z1Z2 |011〉+ 〈011|Z1Z3 |011〉 = −1 + (−1) = −2

• Analogously

〈010|H |010〉 = 〈010| (Z1Z2 + Z1Z3) |010〉
= 〈010|Z1Z2 |010〉+ 〈010|Z1Z3 |010〉 = −1 + 1 = 0

141 / 251

Hamiltonians, Hamiltonians everywhere

• Then, we are interested in finding a (basis) quantum state
|x〉 such that

〈x |H |x〉

is minimum, with H =
∑

(i,j)∈E ZiZj the cost function of the
Max-Cut problem
• This is a particular case of a very important problem:

finding the ground state or minimum energy state of a
Hamiltonian
• A Hamiltonian is a Hermitian matrix H (i.e. it verifies

H = H†)
• The (expected) energy of a state |ψ〉 is

〈ψ|H|ψ〉

142 / 251

Example: the Ising model
• We have n spins that interact with their neighbours
• The Hamiltonian of the system is

H =
∑

1≤i<j≤n

JijZiZj +
n∑

i=1

hiZi

with Jij and hi real coefficients
• We want to find a value assignment (1 or -1) that

minimizes the sum
• The problem is NP-hard (it includes the Max-Cut problem)

Image credits: Peter Eastman
143 / 251

QUBO: Quadratic Unconstrained Binary Optimization

• A closely related family of problems is that of Quadratic
Unconstrained Binary Optimization (QUBO)
• These problems are stated as

Minimize
n∑

1≤i≤j≤n

wijxixj

where each xi is a binary variable and wij are real
coefficients
• We can transform the problem into an Ising model via

xi =
1− zi

2

and get back to QUBO with

zi = 1− 2xi

144 / 251

Adiabatic quantum computing

• How to obtain the ground state of H?
• A natural approach is to apply H itself to reach the solution
• The adiabatic theorem (roughly) says that if we start in

the ground state of a Hamiltonian and we change this
Hamiltonian slowly, we will stay in a ground state
• The idea behind adiabatic quantum computing is

• Start with the ground state of a simple Hamiltonian Hi
• Evolve the the system to the ground state of the problem

Hamiltonian Hf
• To achieve that, we apply a time-dependent Hamiltonian

H(t) = (1− t
T

)Hi +
t
T

Hf

for time T

145 / 251

Adiabatic quantum computing (2)

• To guarantee adiabaticity, T must grow as the inverse of
the square of the spectral gap of H(t) (difference between
the first and the second energy levels)
• The spectral gap is hard to compute
• In practice, quantum annealing is used:

• We take Hi = −
∑n

j=1 Xj (with ground state
∑2n−1

x=0 |x〉)
• Hf is an Ising Hamiltonian that encodes our problem
• We let the system evolve for time T (no necessarily

adiabatic)
• We measure to obtain a candidate solution
• We repeat the process a number of times and keep the

best solution
• This is the basis of D-Wave’s quantum computers

146 / 251

D-Wave’s quantum computers

• These are special-purpose computers: they find
approximate solutions of the Ising model
• Free access (1 minute/month) at
https://www.dwavesys.com/take-leap

• We will test them with this example

147 / 251

https://www.dwavesys.com/take-leap
https://bit.ly/3dPos2L

An application in High Energy Physics

148 / 251

An application in High Energy Physics (2)
• Signal: production of a Higgs boson through the fusion of

two gluons which then decay into two photons
• Background: standard-model two-photon production

processes

149 / 251

An application in High Energy Physics (3)

• The authors consider 36 weak classifiers ci(x) and
combine them to form a strong classifier

O(x) =
∑

i

wici(x)

with wi ∈ {0,1}
• They minimize ∑

x

(y(x)−
∑

i

wici(x))2

which, when an additional regularization parameter λ is
added, is equivalent to minimizing∑

i,j

Cijwiwj +
∑

i

(λ− 2Ci)wi

where Cij =
∑

x ci(x)cj(x) and Ci =
∑

x ci(x)y(x).
150 / 251

An application in High Energy Physics (4)

151 / 251

Part XIV

Quantum Approximate Optimization
Algorithm: going digital

152 / 251

The Quantum Approximate Optimization Algorithm

• The Quantum Approximate Optimization Algorithm (QAOA)
was proposed by Farhi, Goldstone and Gutmann (2014) to
obtain approximate solutions of the problem of minimizing

C(x) =
∑

a

waCa(x)

where x is n-bit string, wa are real weights and each Ca is
a boolean function
• Max-Cut is one such problem, with every wa equal to 1 and

each Ca of the form
xi ⊕ xj

• The maximum satisfiability (MAX-SAT) and weighted
maximum satisfiability (weighted MAX-SAT) are other
examples of that kind of problems

153 / 251

Boolean functions and Hamiltonians
• For each boolean Ca we can find a Hamiltonian Ha of the

form

a0I +
∑

i

aiZi +
∑
i<j

aijZiZj +
∑

i<j<k

aijkZiZjZk + · · ·

such that for every string x it holds that Ca(x) = 〈x |Ha |x〉
• Then, minimizing C(x) is equivalent to finding the ground

state of
Hf =

∑
a

waHa

since Hf is diagonal and 〈x |Hf |x〉 = C(x).

Image credits: Stuart Hadfield https://arxiv.org/pdf/1804.09130.pdf 154 / 251

https://arxiv.org/pdf/1804.09130.pdf

The parametrized states of QAOA

• QAOA is an adaptation of the adiabatic model to
gate-based quantum computers
• Remember that the adiabatic Hamiltonian was

H(t) = (1− t
T

)Hi +
t
T

Hf

with Hi = −
∑n

j=1 Xj

• As an approximation of the evolution of the system, we
consider parametrized states of the form

|β, γ〉 = e−iβpHi e−iγpHf . . . e−iβ2Hi e−iγ2Hf e−iβ1Hi e−iγ1Hf |s〉

where p ≥ 1 and

|s〉 =
2n−1∑
i=0

|x〉

155 / 251

Optimization with QAOA

• QAOA is a hybrid method in which both a quantum and
classical computer are used
• The steps are:

1 Choose a value for p and some initial angles β, γ
2 Prepare the state |β, γ〉
3 Estimate the energy E(β, γ) = 〈β, γ|Hf |β, γ〉 of |β, γ〉
4 Vary β and γ in order to minimize E(β, γ)
5 If the stopping criterium is met, stop. Else, go to 2

• Step 2 is carried out on the quantum computer and steps
1, 3 and 4, on a classical one

156 / 251

How to prepare |β, γ〉

• We already know that |s〉 =
∑2n−1

i=0 |x〉 can be prepared
with Hadamard gates
• Each e−iβk Xj is a rotation RX (2βk) or equivalently∣∣xj

〉
H RZ (2βk) H

• To implement e−iγk Hf we only need to consider cases of
the form

e−iγk Zi1
···Zij

because
• All terms of the form Zi1 · · ·Zij commute
• The weights in Hf =

∑
a waHa are “absorbed” by the angles

γ

157 / 251

Implementing e−iγk Zi1 ···Zij

• Notice that e−iγk Zi1
···Zij is diagonal in the computational

basis
• In fact, for a binary string x = x1 . . . xn it acts on |x〉 as

• |x〉 → e−iγk |x〉 if xi1 ⊕ · · · ⊕ xij = 0 mod 2
• |x〉 → eiγk |x〉 if xi1 ⊕ · · · ⊕ xij = 1 mod 2

• This is very similar to the action of a RZ rotation
• Then, we can:

• Compute the parity xi1 ⊕ · · · ⊕ xij with CNOT gates
• Apply RZ (2γk) on the qubit where we have computed the

parity
• Uncompute the parity

158 / 251

An example

• Imagine that we are working with 4 qubits and we want to
implement e−iγZ1Z2Z4

• We can use the following circuit:

|x1〉 • •
|x2〉 • •
|x3〉
|x4〉 RZ (2γ)

159 / 251

Estimating the energy

• Estimating the energy is very easy in the case of QAOA
• We repeat the following process a fixed number of times:

1 Prepare the state |β, γ〉
2 Measure it to obtain a string x
3 Compute C(x)

and then we average the results
• This works because if

|β, γ〉 =
∑

x∈{0,1}n

ax |x〉

then
〈β, γ|Hf |β, γ〉 =

∑
x∈{0,1}n

|ax |2C(x)

• It is also interesting to keep the string x with minimum
value C(x) over all we obtain when we measure

160 / 251

Some comments on QAOA

• For the procedure to be efficient, Hf must have a number
of terms e−iγk Zi1

···Zij that is polynomial in the number n of
qubits and the number m of clauses Ca(x) of C(x)

• If a clause Ca(x) only involves k bits, then its translation Ha
will involve terms with at most k Pauli matrices Zi

• Thus, if p is a constant independent of n and m and all
clauses involve at most k bits (also independent of n and
m) then the number of gates will be polynomial in n and m
• This is the case, for example, of problems such as MaxCut

or Max 3-SAT
• When p →∞, the ground state of |β, γ〉 tends to the

ground state of Hf

• Interesting results can be obtained in some cases even for
small p
• The choice of classical optimizer is important

161 / 251

Applying QAOA for particle track reconstruction

162 / 251

Applying QAOA for particle track reconstruction (2)
• QUBO formulation to select the best pairs of triplets by

minimizing

O(a,b,T) =
∑

aiTi +
∑

bijTiTj

where the ai are bias weights expressing quality of the
triplets (all equal) and the bij are coupling strengths
between triplets
• From this formulation, QAOA is planned to be applied on

Rigetti computers (work by Eric Rohm at Lawrence
Berkeley National Laboratory)

163 / 251

Part XV

Variational Quantum Eigensolver:
endless forms most beautiful

164 / 251

VQE: Variational Quantum Eigensolver

• QAOA can be seen as a particular case of a more general
algorithm: the Variational Quantum Eigensolver (VQE)
• Now, we will have a general Hamiltonian Hf (with a

polynomial number of terms) and we want to approximate
its ground state
• Instead of the parametrized state |β, γ〉 of QAOA we will

use
• An initial state |ψ〉 that is easy to prepare (it could be just
|0〉)

• A parametrized unitary U(θ) that is called a variational
form

• We can create an ansatz

|ψ(θ)〉 = U(θ) |ψ〉

and try to minimize its energy with respect to Hf by varying
the parameters

165 / 251

The variational principle

• Since Hf is a Hermitian matrix, it has real eigenvalues λi
and an associated orthonormal basis of eigenvectors |φi〉
• Then, we can write |ψ(θ)〉 as a linear combination

|ψ(θ)〉 =
∑

i

αi |φi〉

• The energy of |ψ(θ)〉 is

〈ψ(θ)|Hf |ψ(θ)〉 =
∑

i

|αi |2λi

• If λmin is the minimum of the eigenvalues then

min
θ
〈ψ(θ)|Hf |ψ(θ)〉 ≥ λmin

166 / 251

Approximating the ground state with VQE

• VQE is also a hybrid method in which both a quantum and
classical computer are used
• The steps are:

1 Choose an initial state |ψ〉, a variational form U(θ) and
some initial vector θ

2 Prepare the state |ψ(θ)〉 = U(θ) |ψ〉
3 Estimate the energy E(θ) = 〈ψ(θ)|Hf |ψ(θ)〉 of |ψ(θ)〉
4 Vary θ in order to minimize E(θ)
5 If the stopping criterium is met, stop. Else, go to 2

• Step 2 is carried out on the quantum computer and steps
1, 3 and 4, on a classical one

167 / 251

Estimating the energy of a state

• The Hamiltonian can be always expressed as a linear
combination of tensor product of Paulis
• For instance

Hf =
1
4

Z1Z3 − 3X1Y3Z4

• Given |ψ〉, we can use linearity and evaluate

〈ψ|Hf |ψ〉 =
1
4
〈ψ|Z1Z3 |ψ〉 − 3 〈ψ|X1Y3Z4 |ψ〉

• To estimate 〈ψ|Z1Z3 |ψ〉 we can just measure |ψ〉 in the
computational basis and average the energies of the
results (which will be 1 or -1 for each individual
measurement result).

168 / 251

Estimating the energy of a state (2)

• To estimate 〈ψ|X1Y3Z4 |ψ〉 we can notice that

X = HZH

and
Y = SHZHS†

• Then 〈ψ|X1Y3Z4 |ψ〉 is equal to

〈ψ| (H ⊗ I ⊗ SH ⊗ I)Z1Z3Z4(H ⊗ I ⊗ HS† ⊗ I) |ψ〉

• Thus, we can just measure the energy on Z1Z3Z4 of
(H ⊗ I ⊗ HS† ⊗ I) |ψ〉 because(

(H ⊗ I ⊗ HS† ⊗ I) |ψ〉
)†

= 〈ψ| (H ⊗ I ⊗ SH ⊗ I)

• Notice that this is equivalent to measuring in a different
basis

169 / 251

Simulating molecules with VQE

• VQE has been used to estimate ground states of several
molecules
• The fermionic Hamiltonian has to be translated into a qubit

Hamiltonian (Jordan-Wigner, Bravyi-Kitaev...)
• Information of the problem is used for:

• The initial state (vacuum state |0〉, Hartree-Fock...)
• The variational form (Unitary Coupled-Cluster Single and

Double excitations...)

Image credits: Kandala, Mezzacapo, Temme, Takita, Brink, Chow, Gambetta. Nature 549, 242–246 (2017)

170 / 251

Finding excited states

• We can also use VQE to find excited states (eigenstates
that are not the ground state)
• Once we have the ground state |ψ0〉 = U(θ0) |ψ〉, we

consider the Hamiltonian

H ′f = Hf + C |ψ0〉 〈ψ0|

• Then, we have that 〈ϕ|H ′f |ϕ〉 is

〈ϕ|Hf |ϕ〉+ C 〈ϕ|ψ0〉 〈ψ0|ϕ〉 = 〈ϕ|Hf |ϕ〉+ C| 〈ψ0|ϕ〉 |2

• if C is bigger than the difference between the ground
energy and the next energy level of Hf , then |ψ0〉 is not the
ground state of H ′f

171 / 251

Computing inner products of parametrized states
• To compute the inner product in the expression of the

energy we can notice that |ψ0〉 = U(θ0) |ψ〉 and that the
new states that we try will be of the form |ϕ〉 = U(θ) |ψ〉 for
some θ
• Then, it is easy to estimate | 〈ψ0|ϕ〉 |2 by running the circuit

of the figure and computing the relative frequency of |0〉
because

| 〈ψ0|ϕ〉 |2 = | 〈0|V †U(θ0)†U(θ)V |0〉 |2

where V is a unitary such that V |0〉 = |ψ〉

|0〉

V U(θ) U†(θ0) V †|0〉

|0〉
172 / 251

An application of VQE in High Energy Physics
• Work by Li, Macridin, Spentzouris - Fermilab (2019)
• Rabi Hamiltonian: two-level system (TLS) coupled to a

photon mode

H = ωaa† +
Ω

2
Z + g(a† + a)X

• Number-basis binary encoding: photon mode truncated to
up to 3 photons

H = ωZ0 +
ω

2
Z1 +

Ω

2
Z2 + g

√
Z0 + 2X1X2

+
g√
2

X0X1X2 + Y0Y1X2 +
3ω
2

173 / 251

Results on simulator and Rigetti’s quantum computers

174 / 251

Part XVI

Quantum Machine Learning: a
marriage made in heaven

175 / 251

What I talk about when I talk about Quantum Machine
Learning

Image credits: Figure taken from Supervised Learning with Quantum Computers. Schuld, Petruccione (2018)

176 / 251

QBLAS: The Quantum Basic Linear Algebra
Subroutines

• A number of algorithms in Quantum Machine Learning
(QML) rely on the exponential speedup of methods such
as
• Quantum Fourier Transform
• Quantum Phase Estimation
• HHL

• We refer to these methods as Quantum Basic Linear
Algebra Subroutines (QBLAS)
• Other quantum subroutines used in QML include amplitude

amplification and quantum annealing
• Some common problems are how to load the input, how to

read the output and the size of the circuits

177 / 251

QRAM: The elephant in the room

• A Quantum Random Access Memory should allow queries
in superposition
• Several architectures have been proposed (for instance,

the “bucket brigade”) but further investigation is needed
• Loading data can become a bottleneck for many QML

algorithms

178 / 251

Translational QML and speedups

Image credits: Table taken from Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd. Nature 549, 195–202(2017)

179 / 251

QML in the times on NISQ

• Noisy Intermediate-Scale Quantum computers are
• Subjet to noise (not fault-tolerant)
• Limited in the number of qubits (50-100)
• Not fully-connected

• Despite these drawbacks, they may be useful for QML

180 / 251

Part XVII

Quantum Support Vector Machines:
exploiting the kernel trick

181 / 251

Support Vector Machines
• Support Vector Machines (SVM) are a very popular

machine learning algorithm used for data classification
• The main idea is to find a hyperplane that separates data

from two different classes with the maximum possible
margin

Image credits: wikipedia.org
182 / 251

Finding the hyperplane
• We are given training data points (xi , yi) where the xi are

vectors of real numbers and yi ∈ {1,−1}
• The problem of finding the separating hyperplane with the

biggest margin can be formulated as

Minimize
1
2
||w ||2 subject to yi(w · xi + b) ≥ 1

Image credits: John Daniel, towardsdatascience.com 183 / 251

The soft-margin case
• In the “soft-margin” case we introduce a hyperparameter

C ≥ 0 and reformulate the problem as

Minimize
1
2
||w ||2 + C

∑
i

ξi

subject to

yi(w · xi + b) ≥ 1− ξi , ξi ≥ 0

Image credits: Rishabh Misra, towardsdatascience.com 184 / 251

Dual formulation of SVM

• An equivalent formulation of the SVM optimization problem
is this dual formulation

Maximize
∑

i

αi −
1
2

∑
i,j

yiyjαiαj
(
xi · xj

)
subject to

0 ≤ αi ≤ C
∑

i

αiyi = 0

• From the values αi we can recover b and w . In fact

w =
∑

i

αiyixi

and to classify a point x we compute

w · x + b =
∑

i

αiyi (xi · x) + b

185 / 251

Non-linear separation

• A common technique to improve classification with Support
Vector Machines is to embed the data points xi into a
higher-dimensional space using a feature map φ(xi)

Image credits: C. Moreira, “Learning To Rank Academic Experts’, Master Thesis, Technical University of Lisbon,
2011

186 / 251

The Kernel Trick

• We can easily incorporate the feature map in our
formulation of the dual problem for the SVM

Maximize
∑

i

αi −
1
2

∑
i,j

yiyjαiαj
(
φ(xi) · φ(xj)

)
subject to

0 ≤ αi ≤ C
∑

i

αiyi = 0

• Again, we can obtain w as

w =
∑

i

αiyiφ(xi)

and to classify a point x we only need to compute

w · x + b =
∑

i

αiyi (φ(xi) · φ(x)) + b

• The function K (xi , xj) = φ(xi) · φ(xj) is called “kernel”
187 / 251

Computing kernel functions with quantum computers

• In 2019, Havlı́ček, Córcoles, Temme et al. proposed using
quantum computers as kernel estimators
• Each data point xi is embedded in a Hilbert space by

means of a variational circuit Uφ(xi) such that
Uφ(xi) |0〉 = |φ(xi)〉
• We know we can |

〈
φ(xj)

∣∣φ(xi)
〉
|2 by running the circuit of

the figure and computing the relative frequency of |0〉

|0〉

Uφ(xi) U†φ(xj)|0〉

|0〉

188 / 251

Using QSVM in High Energy Physics

189 / 251

Using QSVM in High Energy Physics (2)

• Classification of Higgs events (H → γγ and H → µµ)

Image credits: Sau Lan Wu et al.

190 / 251

Using QSVM in High Energy Physics (2)

Image credits: Sau Lan Wu et al.

191 / 251

Part XVIII

Quantum Neural Networks: Deep
Learning meets Quantum

Computing

192 / 251

What is a Quantum Neural Network
• Quantum Neural Networks or Variational Quantum

Classifiers are parametrized quantum circuits that can be
“trained” on data and used for classification tasks
• The most common architecture is shown in the figure

below: a feature map that embeds the data point into the
Hilbert space and a variational form that performs the
classification

Image credits: Vojtech Havlı́ček et al. https://arxiv.org/pdf/1804.11326.pdf
193 / 251

https://arxiv.org/pdf/1804.11326.pdf

Training and classifying with a Quantum Neural
Network

• A QNN prepares a state |ψ(x , θ)〉 that depends on the
input data x and the parameters θ
• We measure the state and compute an average value, for

instance

f (x , θ) = 〈ψ(x , θ)|Z1 · · ·Zn |ψ(x , θ)〉

• For each training example xi we have a class yi

• We choose a loss function L and we want to find θ
minimizing ∑

i

L(yi , f (x , θ))

• Once we obtain the optimal value θmin we can predict a
class for x using f (x , θmin)

194 / 251

Gradients and the parameter shift rule

• To obtain θmin, we can use a classical minimizer
• If we need to compute gradients of f the parameter-shift

rule is useful
• Suppose

U(θ) = e−iθH

with H a Hermitian matrix with eigenvalues ±r (r real)
• This is the case, for instance, if U is a one-qubit rotation
• Then, we have

∂f (x , θ)

∂θ
= r · [f (x , θ + s)− f (x , θ − s)]

where s = π
4r

• This requires just two extra evaluations of the same circuit
with shifted parameters

195 / 251

Choosing feature maps and variational forms

Image credits: Sim, Johnson, Aspuru-Guzik. Adv. Quantum Tech. 2(12) (2019)

196 / 251

The power of quantum neural networks

Image credits: Amira Abbas et al. https://arxiv.org/pdf/2011.00027.pdf

197 / 251

https://arxiv.org/pdf/2011.00027.pdf

Quantum Neural Networks in HEP

Image credits: Sau Lan Wu et al.

198 / 251

Quantum Neural Networks in HEP (2)

Image credits: Sau Lan Wu et al.

199 / 251

Quantum Neural Networks in HEP (3)

Image credits: Koji Terashi
200 / 251

Quantum Neural Networks in HEP (4)

Image credits: Koji Terashi et al. https://arxiv.org/pdf/2002.09935.pdf

201 / 251

https://arxiv.org/pdf/2002.09935.pdf

Quantum Neural Networks in HEP (5)

Image credits: Koji Terashi et al. https://arxiv.org/pdf/2002.09935.pdf 202 / 251

https://arxiv.org/pdf/2002.09935.pdf

Part XIX

Quantum Generative Adversarial
Networks: this quantum image does

not exist

203 / 251

GANs: Generative Adversarial Networks
• Generative Adversarial Networks (GANs) were introduced

by Ian Goodfellow and his collaborators in 2014
• The objective, is, given a training dataset, learning to

generate new, unseen data with the same distribution
• Impressive results have been achieved in several different

applications

Image credits: Nvidia/StyleGAN https://arxiv.org/abs/1812.04948 204 / 251

https://arxiv.org/abs/1812.04948

Architecture of a GAN

• Two neural networks: generator and discriminator
• The generator tries to “fool” the generator
• The discriminator tries to distinguish between real and fake

images

Image credits: Thalles Silva - www.freecodecamp.org

205 / 251

GAN training

• The generator and discriminator are trained in alternating
phases
• The discriminator tries to maximize

Ex [log D(x)] + Ez [log (1− D(G(z)))]

• The generator can try to minimize

Ez [log (1− D(G(z)))]

or (in practice) to maximize

Ez [log D(G(z))]

206 / 251

Quantum GANs

• A Quantum GAN replaces the generator or the
discriminator (or both) with a quantum circuit

207 / 251

Using a QGAN to load a probability distribution

208 / 251

Quantum generator in IBM’s QGAN

209 / 251

Application of QGANs in HEP: Calorimeter output

• Two-dimensional projection of 3D energy shower

Image credits: Su Yeon Chang, Sofia Vallecorsa (CERN openlab)

210 / 251

To learn more...

Image credits: https://arxiv.org/pdf/2005.08582.pdf

Image credits: Modern Physics Letters A

211 / 251

https://arxiv.org/pdf/2005.08582.pdf

Part XX

Errare quantum est: quantum error
correction

212 / 251

Quantum computers and errors: a problem without
solution?

• A series of problems seem to prevent the possibility of
fault-tolerant quantum computing:
• The no-cloning theorem
• The collapse of the state after measurement
• Unitary operations are continuous (not discrete)

• Despite these problems, quantum error correction is
possible

213 / 251

A classical error-correcting code

• For quantum error correction, we can try use ideas from
classical error correction
• The simplest approach is to use redundancy to code the

information
0→ 000

1→ 111

• We use majority voting to “correct” errors

000,001,010,100→ 000

111,110,101,011→ 111

• In this way, we can correct errors that affect only a single bit

214 / 251

A quantum code that corrects flip errors in a single
qubit

• We can extend the previous idea to the quantum domain
• We use three qubits to code one

|0〉 → |000〉

|1〉 → |111〉
• By linearity

α |0〉+ β |1〉 → α |000〉+ β |111〉

• It does NOT violate the no-cloning theorem
• The circuit for encoding is simple

|ψ〉 • •
|0〉
|0〉

215 / 251

Detecting the flip of a single qubit

• How can we detect if a qubit has flipped without measuring
it?
• We use ancillary qubits to detect the error syndrome

|000〉 , |111〉 → |00〉 |001〉 , |110〉 → |01〉

|010〉 , |101〉 → |10〉 |100〉 , |011〉 → |11〉

|ψ〉 • •
Error

• •
|0〉 •
|0〉 •
|0〉
|0〉

216 / 251

Correcting the flip of a single qubit

• Now, we can measure the syndrome qubits and apply the
appropriate error correction operation
• If we obtain 00, we do nothing
• If we obtain 01, we invert the third qubit
• If we obtain 10, we invert the second qubit
• If we obtain 11, we invert the first qubit

• In this way, we are also “discretizing” the errors. If the error
acts as

|000〉 →
√

1− ε2 |000〉+ ε |001〉

with the syndrome register we would have√
1− ε2 |000〉 |00〉+ ε |001〉 |01〉

and, when we measure, it will collapse to either |000〉 |00〉
or |001〉 |01〉 and then we can correct

217 / 251

A quantum code to correct phase inversion errors

• Another type of error that a qubit can suffer is a phase
inversion (as if an unwanted Z gate was applied to it)

α |0〉+ β |1〉 → α |0〉 − β |1〉

• We can use the following code

|0〉 → |+ + +〉

|1〉 → |− −−〉
• By linearity

α |0〉+ β |1〉 → α |+ + +〉+ β |− − −〉

|ψ〉 • • H

|0〉 H

|0〉 H

218 / 251

Detecting phase inversion errors

• It is almost equal to the case of qubit flip
• We only need to take into account that HZH = X
• But X acts as a qubit flip
• Thus, we can use the following circuit

|ψ〉 • • H

Error

H • • H

|0〉 H H • H

|0〉 H H • H

|0〉
|0〉

219 / 251

Correcting phase inversion errors

• Again, it is enough to measure the syndrome and measure
accordingly
• If we obtain 00, we do nothing
• If we obtain 01, we apply Z to the third qubit
• If we obtain 10, we apply Z to the second qubit
• If we obtain 11, we apply Z to the third qubit

• And we obtain “discretization” of the errors for free. For
instance

|− − −〉 →
√

1− ε2 |− − −〉+ ε |−+−〉

with the syndrome register would be√
1− ε2 |− − −〉 |00〉+ ε |−+−〉 |10〉

and, when we measure, it would collapse to either
|− − −〉 |00〉 or |−+−〉 |10〉 and we know how to correct.

220 / 251

The codes in action

• Seeing the codes in action can be illuminating
• We will use Quirk
• Qubit flip error-correcting code
• Phase inversion error-correcting code

221 / 251

https://algassert.com/quirk
https://bit.ly/2T5qLWT
https://bit.ly/2t0JZCv

Combining both codes: Shor’s code

• We can combine both codes using 9 qubits (Shor’s code)
• The code is

|0〉 → 1√
8

(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 → 1√
8

(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

222 / 251

Detecting qubit flips with Shor’s code

• We can use the following syndromes to detect qubit flips

223 / 251

Detecting phase inversion errors with Shor’s code

• We can use the following syndromes to detect phase
inversions

224 / 251

Correcting any one-qubit error with Shor’s code

• Discretization, again, allows us to use Shor’s code to
correct errors in a single qubit
• The key is to note that Y = iXZ and that any one-qubit

gate G can be written in the form

G = aI I + axX + aY Y + aZ Z

• Each error will have different syndromes for qubit flip (X)
and for qubit-inversion (Z)
• When we measure, we discretize and obtain a concrete

type of error that we can correct with the syndrome
information

225 / 251

Shor’s code in action

• Qubit flip syndrome
• Phase inversion syndrome

226 / 251

https://bit.ly/35FEvu0
https://bit.ly/308pgsL

Logical operations with Shor’s code

• We can perform quantum transformations on the logical
qubits of Shor’s code
• For instance, if we use Z1Z2Z3Z4Z5Z6Z7Z8Z9 its effect is

|0〉L → |1〉L |1〉L → |0〉L

so it acts like X
• Analogously, X1X2X3X4X5X6X7X8X9 acts like a Z gate

|0〉L → |0〉L |1〉L → −|1〉L

• Other gates can be implemented in a similar way or with
other techniques (gate teleportation)

227 / 251

Stabilizer codes

• Many quantum error-correcting codes are examples of
stabilizer codes
• In stabilizer codes, all the states are fixed points of certain

tensor products of Pauli matrices
• For instance, for the code spanned by {|000〉 , |111〉} the

stabilizers are

I1 ⊗ I2 ⊗ I3 Z1 ⊗ Z2 ⊗ I3 Z1 ⊗ I2 ⊗ Z3 I1 ⊗ Z2 ⊗ Z3

which, under multiplication, form a (commutative) group
generated by

Z1 ⊗ Z2 ⊗ I3 Z1 ⊗ I2 ⊗ Z3

• It is important to notice that the eigenvalues of tensor
products of Paulis are 1 or -1

228 / 251

Shor’s code as a stabilizer code

• Both

1√
8

(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

and

1√
8

(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

are stabilized by

X1X2X3X4X5X6 X4X5X6X7X8X9

Z1Z2 Z2Z3 Z4Z5 Z5Z6 Z7Z8 Z8Z9

229 / 251

Measuring syndromes with stabilizer codes

• For a state to be in the code, it needs to be stabilized by
each generator of the stabilizer group
• We can measure the syndrome associated to one of the

generators G by using the circuit of the figure
• The state just before measuring is

1
2
|0〉 (|ψ〉+ G |ψ〉) +

1
2
|1〉 (|ψ〉 − G |ψ〉)

so if G |ψ〉 = |ψ〉 we will measure |0〉 and if G |ψ〉 = − |ψ〉
we will measure |1〉

|0〉 H • H

|ψ〉 G

230 / 251

Surface codes

Image credits: Fowler, Mariantoni, Martinis, Cleland https://arxiv.org/abs/1208.0928 231 / 251

https://arxiv.org/abs/1208.0928

Fault-tolerant quantum computing

• In fault-tolerant quantum computing, every operation (state
preparation, gate application, error correction and
measurements) is performed with a probability O(p2) of
two errors occurring in a given block (p being the
probability of an individual error)
• This and code concatenation, allows us to prove a very

important result: the threshold theorem

Theorem (Threshold theorem - informal version)
If the error probability of each physical operation is below a
threshold pth, it is possible to reduce arbitrarily the error
probability of any quantum computation without increasing too
much the size of the circuit, under reasonable assumptions on
the error model.

232 / 251

Part XXI

Ad astra: quantum supremacy and
the future of quantum computing

233 / 251

What is quantum supremacy?

Quantum supremacy
Quantum supremacy is a term coined by John Preskill that
refers to the moment in which a quantum computer performs a
task in much less time than it would take on a classical
computer

Image credits: Domain of Science https://www.youtube.com/watch?v=90U_SmKyfGI

234 / 251

https://www.youtube.com/watch?v=90U_SmKyfGI

Google’s quantum supremacy

Image credits: Arute et al. https://www.nature.com/articles/s41586-019-1666-5

235 / 251

https://www.nature.com/articles/s41586-019-1666-5

How did Google achieve quantum supremacy?
• Google used a 53 qubit chip (Sycamore) to run

(pseudo)-random circuits with one and two qubit gates
• This task is not especially useful in practice (might have an

application in certified random bit generation)
• We believe this task to be impossible to do efficiently on a

classical computer (it would cause a collapse of the
polynomial hierarchy)

Image credits: https://ai.googleblog.com/

236 / 251

When can we simulate quantum circuits efficiently?

• The complexity of simulating quantum circuits on a
classical computer does not depend only on the number of
qubits and gates
• If parts of the circuit are not entangled, we can simulate

them independently
• If the gates used in the circuit come from restricted sets,

we may be able to simulate them efficiently

Theorem (Gottesman - Knill)
Any circuit that only uses gates from the set {H,X ,CNOT ,S}
plus preparation of the state |0〉 and measurements in the
computational basis can be simulated efficiently with a classical
algorithm

237 / 251

Sampling strings from random circuits

Image credits: M. Sohaib Alam and Will Zeng Medium post

238 / 251

https://medium.com/@sohaib.alam/unpacking-the-quantum-supremacy-benchmark-with-python-67a46709d

Quantum supremacy experiment results

Image credits: Arute et al. https://www.nature.com/articles/s41586-019-1666-5

239 / 251

https://www.nature.com/articles/s41586-019-1666-5

IBM’s challenge to Google’s quantum supremacy

Image credits: https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

240 / 251

https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

Quantum circuit simulation in polynomial space

Image credits: Andrew Shi https://arxiv.org/abs/1710.09364 241 / 251

https://arxiv.org/abs/1710.09364

Quantum computational advantage using photons

242 / 251

Boson sampling

Image credits: Gard et al. https://arxiv.org/abs/1406.6767

243 / 251

https://arxiv.org/abs/1406.6767

Complexity of Boson sampling

Image credits: Gard et al. https://arxiv.org/abs/1406.6767

244 / 251

https://arxiv.org/abs/1406.6767

Quantum computational advantage using photons:
results

Image credits: Han-Sen Zhong et al. Science, 3 Dec 2020

245 / 251

https://science.sciencemag.org/content/early/2020/12/02/science.abe8770

Google Quantum Roadmap

Image credits: H. Neven Google Quantum Summer Symposium 2020

246 / 251

https://www.youtube.com/watch?v=TJ6vBNEQReU&feature=youtu.be&list=PLQY2H8rRoyvx4VttfJOPRslw8XWT7yaBJ&t=967

Honeywell Quantum Roadmap

Image credits: Honeywell news post

247 / 251

https://www.honeywell.com/us/en/news/2020/10/get-to-know-honeywell-s-latest-quantum-computer-system-model-h1

IBM Quantum Roadmap

Image credits: https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

248 / 251

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

IonQ Quantum Roadmap

Image credits: https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap

249 / 251

https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap

My wishlist for the quantum computing future
• (More) confirmation of quantum supremacy
• Practical applications on NISQ computers
• Advances in qubit technologies
• Development of new quantum algorithms with

(exponential) speed-ups
• Fault-tolerant quantum computing

Image credits: Gartner/IBM

250 / 251

Thank you for your attention!

251 / 251

	Introduction: quantum computing... the end of the world as we know it?
	One-qubit systems: one qubit to rule them all
	The BB84 protocol: Alice and Bob's hotline
	Two-qubit systems: more than the sum of their parts
	The CHSH game: Nature isn't classical, dammit
	Quantum teleportation and superdense coding: entangled up in blue
	Deutsch's algorithm: the grandfather of all quantum algorithms
	Multiqubit systems: growing up!
	Everything you always wanted to know about quantum parallelism but were afraid to ask
	The Deutsch-Jozsa algorithm: a very fast way of solving a problem that nobody asked to solve
	Grover's algorithm: finding the needle in the haystack
	Shor's algorithm: breaking the Internet
	Quantum annealing: when time is gold
	Quantum Approximate Optimization Algorithm: going digital
	Variational Quantum Eigensolver: endless forms most beautiful
	Quantum Machine Learning: a marriage made in heaven
	Quantum Support Vector Machines: exploiting the kernel trick
	Quantum Neural Networks: Deep Learning meets Quantum Computing
	Quantum Generative Adversarial Networks: this quantum image does not exist
	Errare quantum est: quantum error correction
	Ad astra: quantum supremacy and the future of quantum computing

