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Introduction: quantum computing...

the end of the world as we know it?
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I, for one, welcome our new quantum overlords

m QUANTUM PHYSICS
Google officially lays claim
to quantum supremacy

A quantum computer reportedly beat the most powerful
supercomputers at one type of calculation

Image credits: sciencenews.org

3/251



Philosophy of the course

If you can't
explain it to a

you don't

understand it
yourself.

ALBERT EINSTEIN

Image credits: Modified from an Instagram image by Bob MacGuffie
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Tools and resources

e Jupyter Notebooks
* Web application to create and execute notebooks that
include code, images, text and formulas
® They can be used locally (Anaconda) or in the cloud
(mybinder.org, Google Colab...)
¢ |BM Quantum Experience
® Free online access to quantum simulators (up to 32 qubits)
and actual quantum computers (1, 5 and 15 qubits) with
different topologies
® Programmable with a visual interface and via different
languages (python, gasm, Jupyter Notebooks)
® Launched in May 2016

® https://quantum—-computing.ibm.com/

Image credits: IBM 5/251


https://quantum-computing.ibm.com/

Tools and resources (2)

¢ Quirk
® Online simulator (up to 16 qubits)
* Lots of different gates and visualization options
® http://algassert.com/quirk
¢ D-Wave Leap
Access to D-Wave quantum computers
Ocean: python library for quantum annealing
Problem specific (QUBO, Ising model...)
https://www.dwavesys.com/take—-leap

D:\WJAVUR (Lear)
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http://algassert.com/quirk
https://www.dwavesys.com/take-leap

The shape of things to come




What is quantum computing?

Quantum computing

Quantum computing is a computing paradigm that exploits
quantum mechanical properties (superposition, entanglement,
interference...) of matter in order to do calculations

Image credits: Erik Lucero




Models of quantum computing

* There are several models of quantum computing (they’re
all equivalent)

Quantum Turing machines

Quantum circuits

Measurement based quantum computing (MBQC)

Adiabatic quantum computing

Topological quantum computing

e Regarding their computational capabilities, they are
equivalent to classical models (Turing machines)

Image credits: Getty Images
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Quantum and classical computational complexity

4 PSPACE problems \

4 NP problems N

NP complete

-—— e e —— ——
— = _——
- -—
- -~

Image credits: wikipedia.org
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computers?

What technologies are used to build quantum

Current

Capacitors

Inductor

~—Microwaves

Superconducting loops
Company support

Google, IBM, Quantum Circuits

©Pros
Fast working. Build on existing
semiconductor industry.

@ Cons
Collapse easily and must
bekept cold.

Laser

Electron

Trapped ions
ionQ

Very stable. Highest
achieved gate fidelities.

Slow operation. Many
lasers are needed.

Microwaves

Silicon quantum dots
Intel

Stable. Build on existing
semiconductor industry.

Only afewentangled
Must be kept cold.

Topological qubits.
Microsoft,
Bell Labs

Greatly reduce
errors.

Existence not yet
confirmed.

Electron

Vacancy—

Laser

C

Diamond vacancies
Quantum Diamond
Technologies

Can operate at
room temperature.

Difficult to
entangle.

Image credits: Graphic by C. Bickle/Science data by Gabriel Popkin
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What is a quantum computer like?

Image credits: IBM

The Sounds of IBM: IBM Q
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https://www.youtube.com/watch?v=o-FyH2A7Ed0

Programming a quantum computer

e Different frameworks and programming languages:
* gasm

Qiskit (IBM)

Cirg (Google)

Forest/pyqil (Rigetti)

Q# (Microsoft)

Ocean (D-Wave)

* Most of them for quantum circuit specification

Image credits: IBM
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What are the elements of a quantum circuit?

e Every computation has three elements: data, operations
and results
¢ |n quantum circuits:
¢ Data = qubits
® QOperations = quantum gates (unitary transformations)
® Results = measurements

Image credits: Adobe Stock
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Part Il

One-qubit systems: one qubit to

rule them all
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What is a qubit?

¢ A classical bit can take two different values (0 or 1). ltis
discrete.

¢ A qubit can “take” infinitely many different values. It is
continuous.

¢ Qubits live in a Hilbert vector space with a basis of two
elements that we denote [0) y |1).

* A generic qubit is in a superposition

1) = a|0) + B [1)
where « and 8 are complex humbers such that
|of? + (87 =1

0
@0 ~”

B =D

e LR

e —1)
Classical Bit Qubit

Image credits: https://prateekvjoshi.com/ 16/251



Measuring a qubit

e The way to know the value of a qubit is to perform a
measurement. However
® The result of the measurement is random
* When we measure, we only obtain one (classical) bit of
information
¢ |f we measure the state ) = «|0) + 5 |1) we get 0 with
probability |a|? and 1 with probability |3|2.
¢ Moreover, the new state after the measurement will be |0)
or |1) depending of the result we have obtained
(wavefunction colapse)
¢ We cannot perform several independent measurements of
|1)) because we cannot copy the state (no-cloning
theorem)

HOW'S YOUR
ANTUM COMPUTER

£ 3
- 2| THE PROTECT EXISTS |
PROTOTYPE COMING

E] INA SIMULTANEOUS
8| STATE OF BEING BOTH
2| TOTALLY SUCCESSFUL  |£
AND NOT EVEN £
STARTED.

| CANT  THATS
2| OBSERVE A TRICKY
IT?  QUESTION.
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What are quantum gates?

¢ Quantum mechanics tells us that the evolution of an
isolated state is given by the Schrédinger equation

H(t)|4(t) = Zh - [9(E)

¢ In the case of quantum circuits, this implies that the
operations that can be carried out are given by unitary
matrices. That is, matrices U of complex numbers verifying

uut=UtU=1

where Ut is the conjugate transpose of U.

e Each such matrix is a possible quantum gate in a quantum
circuit

18/251



Reversible computation

® As a consequence, all the operations have an inverse:
reversible computing

¢ Every gate has the same number of inputs and outputs

e We cannot directly implement some classical gates such
as or, and, nand, xor...

¢ But we can simulate any classical computation with small
overhead

¢ Theoretically, we could compute without wasting energy
(Landauer’s principle, 1961)

Image credits: wikipedia.org 19/251



One-qubit gates

¢ When we have just one qubit |¢) = «|0) 4+ 3 |1), we usually
(6%

B

e Then, a one-qubit gate can be identified with a matrix
U= (i b> that satisfies

d
a b\(a c\ (10
c d)\b d)  \0 1
where @, b, ¢, d are the conjugates of complex numbers
ab,c,d.

represent it as a column vector
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Action of a one-qubit gate

* Astate [¢)) = «|0) + 3|1) is transformed into

(2 8)(5)=(27a%)

that is, into the state |¢) = (aa + bj3) |0) + (ca + dB) |1)
e Since U is unitary, it holds that

(ac + bB)[? + |(ca + dB)? =

21/251



The X or NOT gate

e The X gate is defined by the (unitary) matrix

0 1
10
e |ts action (in quantum circuit notation) is

0) )
) 0)

that is, it acts like the classical NOT gate
e On a general qubit its action is

al0)+ 8|1 —{ X} B10) + 1)
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The Z gate

e The Z gate is defined by the (unitary) matrix
1 0
0o -1
0) 0)
1) = 1)

e |ts action is
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The H or Hadamard gate

e The H or Hadamard gate is defined by the (unitary) matrix

(1

V2 \1 -1
e |ts action is 0411
Jr
o —{A}- 2

e We usually denote

and
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Other important gates

e Y gate
0 —i
(o)
e Sgate
1
(o &%)
e T gate

1 0
0 €&z

* The gates X, Y and Z are also called, together with the
identity, the Pauli gates. An alternative notation is o, ov,

oz.
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The Bloch sphere

e A common way of representing the state of a qubit is by
means of a point in the surface of the Bloch sphere

* If [¢p) = a|0) + B[1) with |a|2 + |B|? = 1 we can find angles
~, 4,8 such that

; 0
a = e cos—

2
- 0
_ e/5 .
I5; sin
¢ Since an overall phase is physically irrelevant, we can

rewrite p p
) = cos 5 |0) + €' sin > 1)

with0 < <mand0 < ¢ < 27.
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The Bloch sphere (2)

* From |¢)) = cos § |0) + € sin §|1) we can obtain spherical
coordinates for a point in R3

(sin 6 cos i, sin Osin p, cos H)

Image credits: wikipedia.org
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Rotation gates

* We can define the following rotation gates
' 0 .. 0 0 _jcnl
RX(Q):e*IgX:cos—/—lsin X — ( COSZH IS|n02>

2 2 —ising  cosy

o joy o, .. 0, cos & —sing
Ry(6) = e '2 —coszl lsm2Y—<Sin§ cos

]
itz Q_.. Q . e’z 0 _ 1 0
Rz(0) = e '2 _coszl i sin 22—< 0 &)= \0 e

e Notice that Rx(7) = X, Ry(n) = Y, Rz(n) = Z,
Rz(%) = S, Rz(%) = T
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Using rotation gates to generate one-qubit gates

¢ For any one-qubit gate U there exist a unit vector
r = (rx, ry, rz) and an angle ¢ such that

U=e 2l = cosgl— isin g(rXX+ Y +r.2)

e For instance, choosing 6 = w and r = (i 0

75 we can
see that

1
7;75)
H=e /3" = f(x+ 2)

e Additionally, it can also be proved that there exist angles a,
B and ~ such that

U= Rz(a)Ry(8)Rz(7)
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Inner product, Dirac’s notation and Bloch sphere

¢ The inner product of two states |¢1) = a4 |0) + 34 [1) and
o) = ap|0) + B2 ]1) is given by

(07

(h1]p2) = (a7 fr) < é) =ajap + B15o

¢ Notice that (0|0) = (1|1) =1 and (0|1) = (1]0) =0
e This allows us to compute

(1)2) = (a7 (0] + B1 (1]) (a2 |0) + B2 (1))
= aqaz (0]0) + a1 B2 (O[1) + Braz (1]0) + 3182 (1]1)
=maz + (162

¢ Orthogonal states are antipodal on the Bloch sphere
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Hello, quantum world!

e Qur very first quantum circuit!

0)
¢ After applying the H gate the qubit state is
0) +11)
V2

e When we measure, we obtain 0 or 1, each with 50%
probability: we have a circuit that generates perfectly
uniform random bits!
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Part IlI

The BB84 protocol: Alice and Bob’s

hotline
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One-time pad: a Catch-22 situation

e Alice wants to send Bob a message m without Eve being
able to learn anything about its content
* This can be achieved if Alice and Bob share in advance a
string k of random bits:
® Alice computes x = m @ k and sends x to Bob
® Eve cannot learn anything from x
(Pr(M = m|X = x) = Pr(M = m))
® But Bob can recover m by computing x @ k
* The main problem is that k has to be as long as m and
cannot be reused so... how to agree on k?

Alice Bob
One-time One-time
pad pad

) 4 v
Plaintext T\ Ciphertext /T Plaintext
LU L/ "
Encrypt Decrypt

Image credits: nullprogram.com
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The problem of key distribution

¢ Alice and Bob may share several keys for later use when
they are together
e But... what if they cannot meet each other?
* There exist key distribution methods like the Diffie-Hellman
protocol but...
® They are not unconditionally secure (they usually rely on
hardness assumptions)
¢ |n fact, DH can be broken with quantum computers!

Diffie - Hellman Key Exchange Protocol

Secret: a, K
A = gamod p

= Ba
Alice S

‘The Security Buddy
ww tybud

ddy.com/ 34/251




BB84: Alice’s part

¢ In 1984, Charles Bennett and Gilles Brassard proposed
the first protocol for quantum key distribution (QKD)

¢ Alice generates a (private) string of random bits

e She could even do this with a quantum computer (H gate +
measure)

e Then, for each bit she randomly chooses if she encodes it
in the {|0),|1)} basis orin the {|+), |—)} basis (remember

that |+) = J5(|0) +[1)) and |-) = 5(|0) —[1)))

e She can easily do this by using H and X gates (recall that
H|0) =|+),H[1) =|-), X|0) = 1), X [1) = |0))

e Alice sends the resulting qubits to Bob (through a quantum
but not necessarily secure channel)
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BB84: Bob’s part

e Each time Bob receives a qubit, he randomly decides
whether he will measure it in the {|0),|1)} basis or in the
{|4+),]|—)} basis

e He does this by applying (or not) the H gate before
measuring

e He writes down the results and the basis he used:

e |f he used {|0),|1)} he writes down O if he gets |0) and 1 if
he gets |1)

* If he used {|+),|—)} he writes down 0 if he gets |+) and 1
if he gets |—)
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: Alice and Bob on the phone

After this process, Alice and Bob talk on a classical
channel (authenticated but not necessarily secure)

Bob announces the bases he has used for the
measurements and Alice announces the bases she used
to code the bits

Bob does NOT announce the results of his measurements

For those bits in which Bob measured with the same basis
that Alice used for coding, he has got the bit that Alice
intended to send

The rest are discarded (they will keep about half of the bits)
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BB84: The protocol in an image

Keybits 1 1
Photons &” ¢ - N e

a B3 B3 o B3 e 3 3 EE IEB Bases

0 110 01 1 0 1 0 1 0 Result

X & & o o XN X I XA
-1 - 001 - - 1 0 1 0 Keybits

Image credits: A. Carrasco-Casado, V. Fernandez, N. Denisenko
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Eve tries to intercept and resend...

¢ Imagine Eve has access to the qubits that Alice sends to
Bob

¢ Eve could try to measure and resend the qubit to Bob

e |t is imposible for Eve to distinguish the four possibilities
{10),[1),]+),|—)} because she does not know the basis
that Alice has chosen

¢ |f Eve chooses a basis at random, she will make an error
half of the time and Alice and Bob may detect it (by sharing
some of the bits of the key to check that they are equal)

e Eve cannot copy the qubits and wait to check the basis that
Alice and Bob have used (no cloning theorem)

e Other more complex attacks are possible, but can be
shown to fail
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Information reconciliation and privacy amplification

e Because of imperfections in the channel and devices or
because of eavesdropping, some of the bits that Alice and
Bob have may be different

¢ They can conduct a process of information reconciliation
(for instance, with the cascade protocol)

e After this phase (or even before), some information may
have leaked to Eve

¢ Alice and Bob can perform privacy amplification (for
instance, with randomness extractors)

Image credits: hikingandcoding.wordpress.com
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QKD at CERN

Image credits: https://arxiv.org/pdf/1203.4940.pdf
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Kak’s three-stage protocol

Proposed by Kak in 2006
¢ |t needs an authenticated quantum channel
Suppose Alice wants to send |x) € {|0),|1)} to Bob:
® Alice chooses 64 at random and sends Ry(64) |x) to Bob
® Bob choose 6 at random and sends Ry (0g)Ry(04) |X)
back to Alice
® Alice applies Ry(—04) and sends

Ry(—0a)Ry(08)Ry(04) |X) = Ry(0s) [X)

to Bob
e Bob can now recover |x) by applying Ry(—6g)

e
X u (X,
A 4(X) Bob
UsUa(X

s
—_— - X
— u
Us(X)

Image credits: wikipedia.org
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The quantum one-time pad

The analagous of the one-time pad with quantum
operations would be to choose a € {0, 1} at random and
encode |x) € {|0),|1)} as

X2|x)=|x®a)

This cannot be extended to general qubits |¢)) because
X|+)=[|+)and X|-) =|-)
We need to choose two bits a and b at random and encode

l¢) as
ZoX2 )
Bob can now recover |1)) by applying X2z
It can be proved that this is unconditionally secure
The QOTP is the basis of some blind quantum computing
protocols

43/251



Other protocols that use independent qubits

e The use of independent qubits does not fully exploit the
possibilities of quantum information, but there are some
additional interesting applications

e For instance:

e Other QKD protocols: B92, SARG04, Six-state protocol...
® The concept of quantum money (Wiesner)

The Elitzur-Vaidman bomb tester

Quantum position verification

One-qubit classifier

NEHEEEH
HNHNE
e E N

= M HHEH

Image credits: The American Association for the Advancement of Science 44/251



Part IV

Two-qubit systems: more than the

sum of their parts
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Working with two qubits

e Each of the qubits can be in state |0) or in state |1)
¢ So for two qubits we have four possibilities:
0) ®10),10)® [1),[1) ®0), [1) @ |1)
that we also denote
0)10),10) [1),[1) 0}, [1) 1)
or
00),[01),[10) , [11)

e Of course, we can have superpositions so a generic state
is

|¢) = @00 |00) + @01 [01) + 10 [10) + 41 [11)
where ayy, are complex numbers such that
1

Z \axyfz =1

x,y=0
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Measuring a two-qubit system

e Suppose we have a state

") = a0 [00) + o1 |01) + 10 [10) + g1 [11)

e |f we measure both qubits, we will obtain:

00 with probability |ago|? and the new state will be |00)

01 with probability |ao1|? and the new state will be [01)

10 with probability |10/ and the new state will be [10)

11 with probability |11|?> and the new state will be [11)

e |tis an analogous situation to what we had with one qubit,
but now with four possibilities
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Measuring just one qubit in a two-qubit system

¢ |f we have a state
[9) = ago [00) + ap1 [01) + a0 [10) + 11 [11)

we can also measure just one qubit

¢ |f we measure the first qubit (for the second one is
analogous):
* We will get 0 with probability |ago|? + |ao1|?
* |n that case, the new state of |¢) will be

Qo |00> + Qa1 |O1>

Vool + a1 2

* We will get 1 with probability |a1o|? + |11 [?
* |n that case, the new state of |¢) will be

a10|10> —+ 99 |11>

V0eol2 + Jaqq[?
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Two-qubit states and vector representation

¢ A general two-qubit quantum state is
") = a0 [00) + o1 |01) + a10 [10) + g1 [11)
* We can represent with the column vector

Qoo
a1
a0
Q11

e We can compute inner products by noticing that
(00]00) = (01|01) = (10[10) = (11|11) =1
(00|01) = (00]|10) = (00|11) =---=(11|00) =0

¢ A two-qubit quantum gate is a unitary matrix U of size 4 x 4
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Tensor product of one-qubit gates

¢ The simplest way of obtaining a two-qubit gate is by having
a pair of one-qubit gates A and B acting on each of the
qubits

¢ In this case, the matrix for the two-qubit gate is the tensor
product A® B

e |t holds that

(A® B)(|¢¥1) @ [¢2)) = (Aly1)) @ (Bly2))

e Of course, either A or B may be the identity
¢ This does NOT exhaust all posible two-qubit gates

{bl,l 51,2 ] [bl,l bl,Z ] ay 1b1,1 apbiy  ay 2b1,1 aiobro

ay a2 ’ ’ ’ ’

[al,l a1 ] ® [bl,l byo ] -~ by bap by bag | aaben arabay aipbay aiaba

a1 a2 by1 bao b1 big b1 bip a1b11 azibia az2bii azabin
a a

21 by b 22 b1 oo ag1ba1 a21bop  @22ba1 anabap

Image credits: wikipedia.org
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The CNOT gate

e The CNOT (or controlled-NOT or cX) gate is given by the
(unitary) matrix

10 0O
0100
0 0 0 1
0 010

e |f the first qubit is |0), nothing changes. If itis 1), we flip
the second bit (and the first stays the same)

e That is:
|00) — |00) |01) — |01)

[10) — [11) [11) — [10)
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Action of the CNOT gate

e lts actionon x, y € {0,1} is, then:

X) —— [

ly) —b— [y ®x)

¢ This is an extremely important gate for it allows to:

® Create entanglement (more on this soon)
® Copy classical information, because:

|00) — |00)
[10) — [11)

e Construct other controlled gates
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Equivalences with CNOT gates

e Sometimes, CNOT gates are not implemented between all
pairs of qubits in a quantum computer

e We can use H gates to change the control and target of a
CNOT gate

= =

e We can swap states using three CNOT gates

D
WV
)
"y
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Constructing controlled gates by using the CNOT gate

¢ Any one-qubit gate U can be decomposed in the form
e’ AXBXC

with ABC =/
e Then, the circuit

S B AF—

implements a U gate on the lower qubit controlled by the
upper qubit
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The no-cloning theorem

e There is no quantum gate that makes copies of an
arbitrary (unknown) qubit

e The proof is easy: suppose we have a gate U such that

Ul) [0) = |4) [4)
e Then U|00) = |00) and U|10) = |11) and by linearity

U( 75100} +110))) = (U100} +U[10)) = ~(00)+/11)
" B 00) + [10) [0) + [1)
\@ :( \/é )’0>

so we should have

00) + [10), _ (10)+ 1) (0)+ 1)) , 1
N R R

(100) +11))

55/251



Quantum entanglement: the spooky action at a

distance

e We say that a state |¢) is a product state if it can be written
in the form

V) = [¢1) [vh2)
where [¢1) and |12) are two states (of at least one qubit)
¢ An entangled state is a state that is not a product state
e Example of entangled states (Bell states):

00) +[11) 00) — |11)
V2 V2
01) +[10) 01) —|10)

V2 V2
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Hello, entangled world!

e We can construct (and measure) Bell states with simple

circuits
0)
0) < A=

e |Initially, the state of the system is |00)

o After we apply the H gate, the state is

00) + [10)
V2

e When we apply the CNOT gate, the state changes to

|00) + [11)
V2
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Hello, entangled world!

0
0) <> A=

e Before we measure the first qubit, we have the state
|00)+[11)
V2

 We will get 0 or 1, each with probability 3

e Suppose we obtain 0. Then, the new state will be |00)

e Then, when we measure the second qubit we will obtain 0
with probability 1!

e Also, if we obtain 1 in the first qubit, in the second we will
also obtain 1!
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Part V

The CHSH game: Nature isn’t

classical, dammit
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The CHSH game

Based in an inequality proposed in 1969 by Clauser,
Horne, Shimony and Holt based on previous work by John
Bell
Alice and Bob receive bits x and y from a referee
They have to respond with bits a and b
They win if

acb=x-y
They can decide on a joint strategy beforehand, but they
cannot communicate during the game

¥
x/\y
OF T8O

Image credits: quantumcomputing.stackexchange.com
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Classical strategies for the CHSH game

e Alice and Bob can win 75% of the time if they always
answer ‘0’

e No other deterministic strategy can do better

e And probabilistic strategies are convex combinations of
classical strategies so they cannot improve the 75%
success rate

a=0la=1|a=x =T
b=20 3/4 1/4 3/4 1/4
b=1 1/4 3/4 1/4 3/4
b=y 3/4 1/4 1/4 3/4
b=-y | 1/4 3/4 3/4 1/4

Image credits: Ryan O’Donnell
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Quantum strategy for the CHSH game

Alice and Bob share a Bell pair before the start of

the game

If Alice receives 0, she measures her qubit and ouputs the
result

If she receives 1, she applies Ry(75) to her qubit and then
she measures it

If Bob receives 0, he applies Ry(%). Else, he applies
Ry(—%)-

Then, he measures his qubit

The probability of winning is now cosz(g) ~ 0.85>0.75

0) —{H] Rv(3)
0)

|00)+]11)
V2

D
UV
g ]
-<
—
a3
~
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Some comments on the CHSH game

e It can be proved that cos?(%) is the highest possible

success rate for a quantum strategy (Tsirelson’s bound)
e The CHSH game can be used to rule out local realism
e Several experiments have been conducted, including:

® Aspect et al. (1981-82)
* Hensen et al. (2005) - Eliminate the locality and detection

loopholes
¢ All of them agree with the predictions of quantum theory

D+ d b D+

—¢{L

A D—i j D- | B

CM [«

Image credits: George Stamatiou based on png file of C.Thompson
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The GHZ game

¢ Introduced by Greenberger, Horne and Zeilinger

¢ A referee selects rst from {000,011,101,110} and sends r
to Alice, s to Bob and t to Charlie

* They produce a, b and ¢ and win if

aobpec=rvsvt

¢ Classically, they can only win with 75% probability
¢ Quantumly, they can win every single time
® They share the state

%(|ooo> —1011) — [101) — |110))

® They apply H to their qubit if the receive 1
® They measure and return the answer
¢ This is sometimes called “quantum pseudo-telepathy”
(Brassard, Cleve, Tapp)
e Both the CHSH and the GHZ game can be used for

randomness certification (and expansion)
64 /251



Part VI

Quantum teleportation and

superdense coding: entangled up in
blue
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Quantum teleportation: Quantum me up, Scotty!

e Can Alice sent a qubit |¢) to Bob it there is no quantum
channel available?

e We are interested in the most general case, even if Alice
does not know which state she has

® The problem can be solved if Alice and Bob share an
entangled state (|00> +1]11))

BEAM ME UP SCOTTY!
=Y, _

Image credits: www.geeksaresexy.net
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Quantum teleportation: Alice’s part

¢ Alice and Bob share an entangled state %(|00) +1(11))

® This can be done in advance
* Or they can rely on a source that distributes entangled pairs
e Alice applies a CNOT gate to the qubit she wants to
teleport |¢) = a|0) + b|1) and to her part of the Bell pair.
We will have

1
5(a(1000) +[011)) + b(110) + [101)))

¢ Alice further applies the H gate to the qubit she wants
teleported. Then, we have

! (100) (a]0) + b 1)) + [01) (b]0) + a1))

+110) (al0) — b[1)) +[11) (—=b[0) + al1)))

e Alice measures her two qubits and sends the result (two
classical bits) to Bob (through a classical channel)

N
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Quantum teleportation: Bob’s part

e Bob uses the second bit received from Alice to decide if he
applies X to his qubit

e And he uses the first bit to decide if he applies Z

%) HI

=3
0) 41 H 3—3 |

Image credits: ProjectQ
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Quantum teleportation: some comments

e |t is not matter that is teleported but information

e When Alice measure her qubit, she looses it (if not, we
would be contradicting the no-cloning theorem)

¢ To teleport a qubit, we need two classical bits and one
entangled pair:

2bits + 1ebit > 1qubit

e Teleportation is not instantaneous, we need classical
communication (no-communication theorem)

¢ Quantum teleportation has been shown experimentally
(current record is 1,400 km)

e Demonstration of quantum teleportation in Quirk
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Entanglement swapping

e Quantum teleportation can also be used with entangled
qubits

¢ Alice shares a Bell pair with Bob and another one with
Charlie

¢ In the figure, the top and bottom qubits belong to Alice.
The second from the top belongs to Bob and the other to
Charlie

¢ Alice teleports her top qubit to Charlie

e Now Bob’s and Charlie’s qubits are entangled (although
maybe they were never in direct contact)

|o>+ H H i
0 TanY
10 T A Pl E_

Image credits: Created with Quirk. Click here to access the circuit
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Gate teleportation

e We can generalize the idea of quantum teleportation to
teleport the action of gates

e With the circuit of the figure, we can apply gate U to an
arbitrary state [)

¢ This is useful if preparing %(|O> Ul0)+ 1) U|1)) and
applying UXU', UZUT, UZXU' are easy compared to
applying U to a general qubit

e Such a situation can happen when U = T in the context of
fault-tolerant quantum computing

)
V

0) —{H]

0)

)
"

(U] ut & z}HU]
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Superdense coding: two for the price of one (more or

less)

* As we have seen, in the presence of a Bell pair, we can
send a qubit with just two classical bits

¢ But... how many classical bits can we communicate with
one qubit?

* Holevo’s bound: the accesible information of one qubit is
just one bit

¢ However, if Alice and Bob share in advance a Bell pair...
we can send two bits of information with just one qubit!

1qubit + 1ebit > 2bits

e This protocol is, in some sense, the inverse of quantum
teleportation
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Superdense coding: Alice’s part

¢ Alice and Bob share a Bell pair in advance (|00> +11))
Alice wants to send to Bob two classical blts b1 and b

If b, =1, she applies X to her qubit

If by = 1, she applies Z to her qubit

Then, she sends her qubit to Bob

Alice encodes bits

H-Gate H-Gate
0)—{ H] :Jl - A,

(later on.. (send)

0) S By

(o] tion based
CNOT oh bits 16 be sent CNOT  Measurement

Prepare and share a Bell pair Bob decodes bits

Image credits: www.quantum-bits.org
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Superdense coding: Bob’s part

* Bob receives Alice’s qubit

e He applies a CNOT gate controlled by Alice’s qubit
e He applies H to Alice’s qubit

* He measures and recovers by and by

Alice encodes bits

b, —
H-Gate sz H-Gate
10) —{H] b HH A0,

Z
(later on...) L= (send)

‘0> b b @:. b,

Operation based
CNOT on bits 10 be sent CNOT Measurement

Prepare and share a Bell pair Bob decodes bits

Image credits: www.quantum-bits.org
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Superdense coding: an example

Suppose Alice wants to send 11
We start with -~ 75(00) +[11))

After Alice’s operations, we will have (|O1> —110))
When Bob applies CNOT he obtains

1 1
E(IOU —[11) = ﬁ(\0> =) )

And with the H gate he gets |11) that now he can measure
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Part VII

Deutsch’s algorithm: the

grandfather of all quantum
algorithms
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Deutsch’s algorithm: statement of the problem

¢ In 1985, David Deutsch proposed a very simple algorithm
that, nevertheless, hints at the capabilities of quantum
computing

¢ The problem it solves is only of theoretical relevance and
was later generalized in a joint work with Jozsa

e We are given a circuit (an oracle) that implements a
one-bit boolean function and we are asked to determine
whether the function is constant (returns the same value
for all inputs) or balanced (returns 1 on one input and 0 on
the other)

¢ Alternatively, we can think of the oracle as indexing a bit
string of length two and we are asked to compute the XOR
of the bits of the string

® |n the classical case, we would need to consult the oracle
twice, to compute both values of the function

¢ In the quantum case, we can make just one oracle call...

but in superposition
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Deutsch’s algorithm: the oracle

® An oracle is treated as a black box, a circuit whose interior
we cannot know

e This circuit computes, in a reversible way, a certain
function f (in our case, of just one input)

¢ For the computation to be reversible, it uses as many
inputs as outputs and “writes the result” with an XOR

X o )
w2 e
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Deutsch’s algorithm: the circuit

* The quantum circuit that we need to use to solve the
problem is very simple

o) —{HH
) —{HL

e [f the function is constant, we will measure 0
e [f the function is balanced, we will measure 1
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Deutsch’s algorithm: the magic

o A
1) —{AH_

e The initial state is |0) 1)
e After the H the gates we have

(10) + [1))(10) = 1))
2

which is the same as
00 (0) = 11) , 10 = 1))
2 2
e When we apply the oracle, by linearity we obtain

0) (108 #(0)) — 1 & £(0))  [1)(0& (1)) —|1& (1))
2 2
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Deutsch’s algorithm: the magic (2)

0)

Or

)

e If f(0) = 0, we have

0@ £(0)) — 1 ®£(0)) = [0) — |1)

* However, if f(0) = 1 we get

0+ £(0))—[1 @ f(0)) =[0a1)-[1®1) =|1)-[0) = =(|0)-|1))

e For f(1) the situation is the same so the global state is

(=1)"@0) (10) — [1)) n

(=)W 1) (10) — 1))

2

2
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Deutsch’s algorithm: the magic (3)

0)
)

Or

e We can also write that state as

0)(10) = 1)) | (=1)* V1) (0) = [1))

2

e Soif f(0) = f(1), we will have

2

10)(10) —[1)) , [1)(10) = 1)) _ (10) +[1)(|0) — |1))

2 2

2

and when we apply the last H and measure we obtain 0.

e Butif f(0) # f(1), the state is

0)(10) =11) _ 1) (0) =[1) _ (19) = [1)(0) = 1))

2 2

and, then, we obtain 1.

2
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Deutsch’s algorithm: some comments

¢ When we apply the oracle we have a phase kickback: we
only act on one qubit, but it affects the whole state
e Deutch’s algorithm exploits an interference phenomenon

similar to that found in some physical experiments
(double-slit experiment, Mach-Zehnder interferometer)

AD

~ sin? = A

».
>

AD ~ COS? %

Y

Image credits: Wikipedia
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Part VIII

Multiqubit systems: growing up!
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n-qubit systems

e When he have n qubits, each of them can be in state |0)
and |1)
e Thus, for the n-qubit state we have 2" possibilities:

00...0),/00...1),...,[11...1)

or simply
0),[1),....[2"— 1)
* A generic state of the system will be
) = ag|0) + a1 [1) + ... +agn1[27 1)
where «; are complex numbers such that

2n—1

Dl =1
i—0
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Measuring a n-qubit state

e Suppose we have the n-qubit state
) = ag|0) +ar[1) +... +azn 27— 1)

e |f we measure all its qubits, we obtain:

* 0 with probability |ag|?> and the new state will be |0 ... 00)

* 1 with probability |4 |> and the new state will be [0...01)

° ...

e 27" _ 1 with probability |an_1|? and the new state will be

11...11)

e |t is analogous to what we had with one and two qubits, but
now with 2" possibilities
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Measuring one qubit in a n-qubit state

e We have
[¥) = ag|0) +ar [1) +... +azn 27— 1)

¢ |f we measure the j-th qubit
* We will get 0 with probability

> laif?
i€l

where [ is the set of numbers whose j-th bit is 0
* In that case, the new state |¢) will be

Zielo a; |f)
Zie/o |ail?
® The case in which we obtain 1 is analogous
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n-qubit quantum gates

® A n-qubit state is
‘1p> :a0]0> + oy |1> + ...+ aon_q |2n_ 1>
e We can represent it by the column vector

ag
el
ap

Quon_A

e To compute inner products with Dirac notation we only
need to note that
(ilj) = 6
e Thus, a n-qubit quantum gate is a unitary matrix U of size
2N x 2"
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The Toffoli gate

e The Toffoli gate (or CCNOT) is a 3-qubit gate. Thus, it can
be represented as a 8 x 8 matrix

e lts action on elements x,y,z € {0,1} is:

R
2) —b— |z (xny)

¢ The Toffoli gate is universal for classical logic, and thus
any classical circuit can be simulated with a quantum
circuit

e However, the Toffoli gate, on its own, is not universal for
quantum computing (and it is not even necessary,
because it can be simulated with one and two-qubit gates)
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Universal gates in quantum computing

e The number of quantum gates (even for a single qubit) is
uncountably infinite. Thus, no finite set of gates is universal
in the classical sense

° However, we can obtain finite sets of gates that allow us to
approximate any other gate as much as we want

The one-qubit gates together with the CNOT gate are universal
for quantum computing

Theorem

The gates X, H, T and CNOT are universal for quantum
computing

| \

\
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Gate equivalences

However, Z, S, Y, St and T are usually included among the
available gates in most quantum computers (such as the ones
in the IBM Q Experience).
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Equivalence of the Toffoli gate

[~
&
Bl
&
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Part IX

Everything you always wanted to

know about quantum parallelism but
were afraid to ask
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Urban legends about quantum parallelism

e But... don’t quantum computers try all 2" possibilities in
parallel?

* The answer is... yes and no (this is quantum computing
after all!)

S0, WTH QUANTUM
COMPUTERS, YOUD
JUST GET ALL THEGE
POSS\BILITIES WORKING!
ON YOUR PROBLEM
IN PARALLEL, EACH ONE
TRYING A DIFFERENT
POTENTIAL ANSWER...

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith
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https://www.smbc-comics.com/comic/the-talk-3

Evaluating a function: querying the oracle

e As we know, in quantum computing every gate is reversible

e To compute a function f we keep the inputs unchanged
and xor the result to the output qubits

¢ This type of circuit is called and oracle for f (we have

already used an oracle for a one-bit function in Deutsch’s
algorithm)

Or
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Evaluating a function in parallel: the superposition

hocus-pocus

e Suppose that we have an oracle O for a function f(x) with
a one-bit input

e We know that, using the H gate, we can put a qubit in
superposition

e |f we start with the state |0) |0) and we apply H on the first
qubit, we will have

’
fl )10) + f|1>|0>

¢ |f we now apply O, by linearity we have
1
—0) |f(O 1) |f(1
\@HI()) f|>\()>
¢ We have evaluated the function on two different inputs with

just one call!
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Evaluating a function in parallel: the tensor-product

abracadabra

e We can do something similar with a function
f(x1, X2, ..., Xn) ON n-variables by using the following circuit

-
0" of
-

0) — =

e When we apply the H gates we obtain

(10) + [1))(10) + 1)) --- (10) + [1)) [0)
\/27
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Evaluating a function in parallel: the tensor-product

abracadabra (2)

e |f we expand the product we get

(10...0)+[0... 1) +...+[1...1))[0) 1 211
V2r =V 2 W0

¢ And, when we apply the oracle, we will get the state
2n1
1

NG > X Ifx)

¢ An exponential number of function evaluations with just

one call!
L
0)*"—AHH |

Or
|

0) —L
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Quantum parallelism vs. non-deterministic machines

e With a non-deterministic machine, we could choose at will
some value f

e This would allow us to solve NP-complete problems

e A similar idea is used in the plot of Quarantine, a
science-fiction novel by Greg Egan

Greg
Egan

QUARANTINE

“Qualifies gmna speculation in the
purest stunning®
Locus
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All that glitters ain’t gold

¢ And now... how do we retrieve the values f(x)?
¢ To obtain a result, we need to perform a measurement
e But then we will get a state of the form

) If(c))
e That is, we only obtain the result of the function for a
randomly chosen input (this may be even worse than
classically evaluating the function)

THE IMPORTANT THING
FOR YOU TO UNDERSTAND
IS THAT QUANTUM

COMPUTING ISN'T JUST
A MATTER OF TRYING
ALL THE ANSWERS IN

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 100/251
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Interferences come to the rescue

e How can we use the 2" evaluations to extract useful
information?

e One possibility is... to produce interferences!

¢ The amplitudes of some states can be negative

¢ |f we manage to “annihilitate” the amplitudes of states we
are not interested in, the probability of obtaining the
answer that we need will grow

¢ This is, in general, no easy task, but we know how to
achieve it in some interesting cases

IN GUANTUM COMPUTING, THE WHOLE

Image credits: The Talk, by Scott Aaronson and Zach Weinersmith 101/251
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Part X

The Deutsch-Jozsa algorithm: a

very fast way of solving a problem
that nobody asked to solve
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Reminder: Deutsch’s algorithm

¢ We have an oracle O for a boolean function f(x)

® f can be constant (returns the same value for all inputs) or
balanced (returns 1 on one input and 0 on the other)

¢ Distinguishing one situation from the other requires, in the
classical case, evaluating the function on the two possible
inputs

e With a quantum computer, we can solve the problem with
just one call to Oy

e The key is to use quantum parallelism together with
interference

l0>o
1) —{AH_
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Upping the ante: the Deutsch-Jozsa algorithm

¢ The Deutsch-Jozsa algorithm solves a type of problem
called promise problem

* We are given a boolean function f(xi,..., Xs)
* We are promised that f is either constant (always 0 or 1) or
balanced (0 for half of the inputs and 1 for the rest)
® We have to decide which of the two cases we are in by
calling the function as few times as possible
e With a classical deterministic algorithm we need (in the
worst case) 271 +1 callsto f

e With the Deutsch-Jozsa quantum algorithm it is enough to
evaluate f just once
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Circuit for the Deutsch-Jozsa algorithm

08—
f
1) —{H}-
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Steps in the Deutsch-Jozsa algorithm

© We create the state |0...0) [1)
® We use Hadamard gates to create the superposition

1
x) (10) — 1))
xe{zo,% o A /2n+1

® We apply the oracle, getting

> ¢21m!X>(\0@f(x)>—\1@f(x)>):

xe{0,1}"

(1)
> Nz x) (10) — 1))
xe{0,1}"
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Steps in the Deutsch-Jozsa algorithm (2)

@ We apply again Hadamard gates to the n first qubits and
we obtain

X)+x y

> Z ) (10) = [1))
ye{0,1}7 xe{0,1}" 2”[
@ Finally, we measure the n first qubits.

@ If the function is constant, we will obtain |0). Otherwise (if
the function is balanced), we will get a string different from
0).
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Correctness of the algorithm

¢ The probability of measuring |0) is exactly

2 2
( 1 f(X)+x-0 (—1)fx)
> = >
xe{0,1}n x€{0,1}"

e [f f is constant, the sum is 1

e [f f is balanced, the sumis 0
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Some comments on the Deutsch-Jozsa algorithm

The problem we have solved is academical, with no
practical interest
But... it shows how quantum computing can obtain global
information about a function with just one evaluation
The key is to use:

® Quantum parallelism (because of superposition)

* |nterference (constructive and destructive)
Similar ideas are used in other algorithms, like the
Bernstein-Vazirani and Simon methods
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Part Xl

Grover’s algorithm: finding the

needle in the haystack

110/251



Statement of the problem

e Grover’s algorithm is used to solve search problems

¢ Imagine we have an unsorted list of N elements

* One of them verifies a certain condition and we want to
find it

¢ Any classical algorithm requires O(N) queries to the list in
the worst case

e Grover’s algorithm can find the element with O(v/N)
queries

Image credits: Downloaded from www.usnewsglobaleducation.com
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The oracle

¢ As in Deutsch-Jozsa’s algorithm, we will use an oracle

e This oracle computes the function f : {0,1}" = {0,1} (with
N =27
* The element we want to find is the one that verifies

F(x) = 1
x) { o }X>

) = lyofx)

112/251



The idea behind the algorithm

¢ Grover’s algorithm is based on the idea of inversion about

the mean
Original Amplitudes Negate Amplitude

b L

Average of all Amplitudes Flip all Amplitudes around Avg

Image credits: quantumcomputing.stackexchange.com
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Grover’s algorithm

e Grover’s algorithm performs O(+/N) iterations, each one
consisting in an oracle query and a call to Grover’s
diffusion operator

e The oracle “marks” those states that verify the condition

¢ The diffusion operator “amplifies” the amplitudes of the
marked states

0)°"

:"'
ol :“'
—HH  HHEHXHZHXH HE - A=
1) —{HH
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Grover’s algorithm as a rotation

¢ Let us denote by |xy) the marked element
¢ Then, the initial state of the upper n qubits is

\/TVOWF\/ZPG)

o= Y o

xe€{0,1}7 x#£x4

where

* We can choose 0 € (0, 5) such that

N -1 i 1
cosf = N sinf = N
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Grover’s algorithm as a rotation (2)

¢ Define D to be Grover’s diffusion operator and G = DOy

e |t can be shown that G acts on the 2-dimensional space
spawned by |xp) and |xy) as a rotation of angle 26

® Thatis
G |Xo) = cos20 |Xp) + sin 26 |x1)

G|xy) = —sin20 |xo) + cos 20 |xy)

EYEEY

xe{0,1}7, x#£x

]x

e Since the initial state is cos 6 |xo) + sin 6 |x1), after m
iterations we will have

cos(2m+1)0|xg) + sin(2m+ 1)0 |xq)
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Grover’s algorithm as a rotation (3)

* In order to obtain |xq) with high probability when we
measure we need

e
2 1)0 ~ =
(2m+1)6 5

and this gives

T 40 2
® Since
sinf = ”1N
we will have
1
N
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The case with multiple marked elements

e [f the number of marked elements is kK > 1, a similar
argument can be made by defining

x0)= 3 (/g 0

f(x)=0

e |n this case

. k
sinf = N

and if k < N we can choose
T [N
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The case with unknown number of marked elements

e |f we do not know how many elements are marked, we can
still user Grover’s algorithm
e We can use Grover’s circuit combined with the Quantum
Fourier Transform to estimate k
e Or we can choose m at random. For instance:
* Uniformly from the set {0, ..., [W + 1}}
® With an incremental scheme, starting with an upper bound
for m of b = 1 and increasing it exponentially up to v/N
* |n all the cases, it can be shown that a marked element will
be found with high probability with O(v/N) queries to the
oracle
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Some comments on Grover’s algorithm

¢ When we measure, we will obtain x such that f(x) = 1 with

probability depending on:
® The number m of iterations
® The fraction of values x that satisfy the condition

¢ |f we perform too many iterations, we can overshoot and
not find a marked element

* On the other hand, if k = & then one iteration will find a
marked element with certainty

e Grover’s algorithm can be used to find minima of functions
(Durr-Hoyer’s algorithm)

e |t can be shown that no other quantum algorithm can
obtain more than a quadratic speed-up over over classical
algorithms in the same setting

¢ A generalization of Grover’s algorithm called Amplitude
Amplification can be used with states prepared by an

arbitrary unitary A
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Part XII

Shor’s algorithm: breaking the

Internet
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Shor’s algorithm and factoring

e Shor’s algorithm is, probably, the most famous quantum
algorithm

e |t finds a factor of a n-bit integer in time
O(n?(log n)(log log n))

* The best classical algo1rithm Ehat we know of for the same
task needs time O(g°"* (logn)?)

e Dramatic consequences for current cryptography (RSA)

Image credits: Jose-Luis Olivares/MIT 122/251



Steps of Shor’s algorithm

© Given N, check that N is not a prime or power of a prime. If
it is, stop.

® Choose 1 < a < N at random

® If b= gcd(a,N) > 1, output b and stop

@ Find the order of amod N, thatis, r > 0 such that 8" = 1
mod N

® Ifrisodd, goto 2
O Compute )
x=az+1 modN
y:a§—1 mod N
@Ifx=0,goto2. Ify=0,take r = 5 and go to 5.

® Compute p = ged(x, N) and g = ged(y, N). At least one of
them will be a non-trivial factor of N
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Correctness of Shor’s algorithm

We know that

mod N

Q0
Il
—

Thus

X.yE(aé+1)(a§—1)5(ar—1)50 mod N

This means that x - y is a multiple of N

Since neither x nor y are multiples of N, either p or q
divides N

It can be proved that step 8 will be reached with high
probability

124 /251



Implementation of Shor’s algorithm

e Every step but number 4 are carried out on a classical
computer (efficient algorithms exist)

e For step 4, there exists a quantum circuit with a number of
gates that is polynomial on n (the number of bits of N)

0) —{H]

QFTH,

0 —{H]
0) —{H]
1) —"——ua®’ U2 — - — U™

53
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Preparing a periodic sequence

¢ The first part of the circuit computes

2"1
1
— > Ix)|a* mod N)
2m x=0
e When we measure the bottom qubits, we obtain
N > Ix)e)
|C xeC

where c is some value in {0,...,N—1}and C = {x: &
mod N = c}.

126/251



Preparing a periodic sequence (2)

e For example, if a=2, N =5, m = 4, we would have
1
2 (O [1) +[1)[2) +2) [4) +[3) [3) + [4) [1) + ... +[15) 3))
and when we measure we could obtain, for instance
1
5 (1)[2) +15)[2) +19) 2) +[13) [2))

¢ Notice that the values of the first register are exactly 4 units
apart and that 2* =1 mod 5.

® In general, we will obtain values that are r units apart,
where 8 =1 mod N.
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Measuring the period

¢ To retrieve the period r we use the (inverse) of the
Quantum Fourier Transform (QFT)
e Two properties of the QFT are central here:
e Shift-invariance (up to an unobservable phase)
® QFT transforms sequences with period r into sequences
with period ¥ (where M = 2™)
¢ After the use of the inverse QFT, we can measure a value
of the form @ with high probability and, from it, obtain r

f(=z)

Image credits: Umesh Vazirani
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Quantum Fourier Transform: definition and circuit

e The QFT of order m is the unitary transformation defined
by

2mijk

QFT |j) = F Z ez |k)

The circuit in the figure |mplements the QFT

The Ry gates in the circuit are what we call Fn’z(g—f)
The number of gates is quadratic in m, an exponential
speed-up over the classical case (FFT)

For Shor, m can be chosen to be about 2n

) ++ R [ R}
lja [H| Ry -

|n—1 . o Ry

Image credits: Jurgen Van Gael
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Using the QFT for phase estimation

e Suppose we are given a unitary operation U and one of its
eigenvectors [¢)

We know that there exists 6 € [0, 1) such that U |¢) = €™/
* We can estimate 6 with the circuit shown below

With the first part, we will obtain - S2m ek k)

By using the inverse QFT we can measure j ~ 2"¢

Superposition Controlled U Operations Measurement

o —] A
- QFT ! .

0) _@ @
) —{a] A

v —2—c-v'He-v?}- - - -

Image credits: Wikipedia
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Shor’s algorithm as a particular case of quantum

phase estimation

e Clearly, the circuit used in Shor’s algorithm is a case of
quantum phase estimation

e |t can be shown that the (unitary) operation of modular
mutiplication by a has eigenvalues

ik
e?m!r k=0,...,r—1

where r is the period of a

e |t is not easy to prepare one of the eigenvectors |i) of the
unitary operation

e But we use the fact that
1 r—1
N =—7)> |tk
1) = 77 2 10w

* We will then measure a value close to £ for some k
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Using quantum phase estimation to count the number
of marked elements

e We can use Grover’s algorithm together with the QFT to
count the number of elements marked by a boolean
function

e The eigenvalues of Grover’s operator are €2 where
sinf = \/%

* Then, with quantum phase estimation we can recover k,
the number of marked elements

Superposition Controlled U Operations Measurement

0 —#} A=

QFT,!

W

Image credits: Wikipedia
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HHL: Applying quantum phase estimations to solve

linear systems of equations

e A quantum algorithm proposed in 2009 by Harrow,
Hassidim and Lloyd can be used to solve linear systems of
equations

¢ The main steps of the algorithm are

e Computation of the eigenvalues (quantum phase
estimation)

® |nversion of the eigenvalues

® Uncomputation of the eigenvalues (inverse of quantum
phase estimation)

Phase estimation R(\™") rotation Uncompute

Ancilla

register S 1) @ Z/7< I

s ¢ 1977
t ®n ®n
register C' 10) o= L £ o 1)
Input - N
register T [b) \L} LU ] |z)

(a) (b) (c)

Image credits: Niel de Beaudrap
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Visualizing Shor’s algorithm with Qirk

e Casea=2and N =15
e Casega=4and N =15
e Caseg=14and N =15
e Casea=26and N =55
T
5
” E%input_ o
|o> Al
10y L
{r—1
|0>—@— L
B=2
10y L
N
10y L
R=15
10y L

Image credits: Created with Quirk
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Part XIII

Quantum annealing: when time is

gold
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The maximum cut or Max-Cut problem

e Consider the problem of dividing the vertices of a graph
into two sets such that the number of edges with extremes
in both sets is the maximum possible

* |t can be proved that this problem, called “maximum cut” or
“Max-Cut”, is NP-hard

e |tis also APX-Hard and thus there is no (classical)
polynomial-time approximation scheme (PTAS) which gets
arbitrarily close to the solution (unless P = NP)

O~

Image credits: Wikipedia.org 136/251



Stating Max-Cut with spins

¢ We can identify each vertex i of the graph with a variable Z;

e We assign value 1 to the vertices of one group and -1 to
the others

e Then, if E is the set of edges, the problem can be stated as

Minimize Y ZZ
(i.j)eE

since vertices in different groups contribute -1 and vertices
of the same group contribute 1
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Example of Max-Cut problem

e For the graph of the figure we need to minimize

H=22,+ 223

e By inspection (or enumerating the eight possibilities) it is
easy to see that the solutions are 011 and 100
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Enter quantum computing

e Remember that the matrix of gate Z is

o %)

and that the vector |0) has coordinates
1
0
1 0 1
0o ) (o)

e Using Dirac notation, we can denote this by

e Then

(0[2]0) =1
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Enters quantum computing (2)

¢ Analogously

e And thus

A1Z1y = (0 1) <(1) _01> <?> ~ 1

e |f we have more qubits, we evaluate each product
independently and multiply the results. For instance:

(01 £1£2101) = ({0 £1 [0)) - (1] 2 (1)) =1 - (=1) = 1
and

(10112123 [101) = ((1[ £ [1))-((1] Z3[1)) = (=1)-(=1) =1
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Back to the Max-Cut example

e We had the Max-Cut problem given by
H=212+2Z1Z3

¢ We can identify a possible cut with |011) (vertices 2 and 3
in one set and 1 in the other) and evaluate its cost by

(011 H[011) = (011 (Z1Z2 + Z1Z5) [011)
— (011]Z1Z2[011) +(011] Z; Z3 [011) = —1 4 (—1) = -2

e Analogously

(010| H|010) = (010| (Z1 Z» + Z1Z5) |010)

= (010]Z1221010) + (010] £1Z3[010) = -1 +1=0
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Hamiltonians, Hamiltonians everywhere

e Then, we are interested in finding a (basis) quantum state
|x) such that
(x| Hx)
is minimum, with H = Z(
Max-Cut problem
e This is a particular case of a very important problem:

finding the ground state or minimum energy state of a
Hamiltonian

¢ A Hamiltonian is a Hermitian matrix H (i.e. it verifies
H = Hf)

® The (expected) energy of a state |¢) is

(WIH[¥)

ijyee ZiZj the cost function of the
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Example: the Ising model

e We have n spins that interact with their neighbours
¢ The Hamiltonian of the system is

H= Z:%zz+zﬁz

1<i<j<n

with J; and h; real coefficients

e We want to find a value assignment (1 or -1) that
minimizes the sum

® The problem is NP-hard (it includes the Max-Cut problem)

DOOOOD
POOOD
DOOOD
POOPOD
POOOO

Image credits: Peter Eastman 143251



QUBO: Quadratic Unconstrained Binary Optimization

¢ A closely related family of problems is that of Quadratic
Unconstrained Binary Optimization (QUBO)

* These problems are stated as
n
Minimize > w;x;
1<i<j<n
where each x; is a binary variable and w; are real
coefficients
e We can transform the problem into an Ising model via
X — 1-— Zj
T2
and get back to QUBO with

Z,':1—2X,'
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Adiabatic quantum computing

* How to obtain the ground state of H?
e A natural approach is to apply H itself to reach the solution

e The adiabatic theorem (roughly) says that if we start in
the ground state of a Hamiltonian and we change this
Hamiltonian slowly, we will stay in a ground state

e The idea behind adiabatic quantum computing is

e Start with the ground state of a simple Hamiltonian H;

* Evolve the the system to the ground state of the problem
Hamiltonian H

® To achieve that, we apply a time-dependent Hamiltonian

t

t
T)H/-i-*Hf

H(t) = (1 - -

fortime T
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Adiabatic quantum computing (2)

To guarantee adiabaticity, T must grow as the inverse of
the square of the spectral gap of H(t) (difference between
the first and the second energy levels)

The spectral gap is hard to compute
In practice, quantum annealing is used:
* Wetake H; = — 3", X; (with ground state 2 1x)
® His an Ising Hamiltonian that encodes our problem
* We let the system evolve for time T (no necessarily
adiabatic)
* We measure to obtain a candidate solution
* We repeat the process a number of times and keep the
best solution

This is the basis of D-Wave’s quantum computers
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D-Wave’s quantum computers

* These are special-purpose computers: they find
approximate solutions of the Ising model

e Free access (1 minute/month) at
https://www.dwavesys.com/take-leap

e We will test them with this example
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An application in High Energy Physics

Published: 19 October 2017

Solving a Higgs optimization problem with
quantum annealing for machine learning

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar & Maria Spiropulu

Nature 550, 375-379(2017) | Cite this article
2461 Accesses \ 183 Altmetric \ Metrics

Abstract

The discovery of Higgs-boson decays in a background of standard-model processes was

assisted by machine learning methods'2. The classifiers used to separate signals such as

these from background are trained using highly unerring but not completely perfect

simulations of the physical processes involved, often resulting in incorrect labelling of

background processes or signals (label noise) and systematic errors. Here we use

quantum>*>° and classical”® annealing (probabilistic techniques for approximating the

global maximum or minimum of a given function) to solve a Higgs-signal-versus-

background machine learning optimization problem, mapped to a problem of finding the

ground state of a corresponding Ising spin model. We build a set of weak classifiers based on

the kinematic observables of the Higgs decay photons, which we then use to construct a 148/251



An application in High Energy Physics (2)

e Signal: production of a Higgs boson through the fusion of
two gluons which then decay into two photons
e Background: standard-model two-photon production

processes
g Y
BETOEO005500 AVAVAVAVAVAV:
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An application in High Energy Physics (3)

® The authors consider 36 weak classifiers c¢;(x) and
combine them to form a strong classifier

0(x) = 3~ wici(x)

with w; € {0, 1}
¢ They minimize

>0 = 3" wia(x)?

which, when an additional regularization parameter A is
added, is equivalent to minimizing

Z C,'jW,'W/' + Z()\ —2C)w;
ij i

where C; = >, ci(x)ci(x) and C; = >, ci(x)y(x).
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An application in High Energy Physics (4)
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Part XIV

Quantum Approximate Optimization

Algorithm: going digital
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The Quantum Approximate Optimization Algorithm

e The Quantum Approximate Optimization Algorithm (QAOA)
was proposed by Farhi, Goldstone and Gutmann (2014) to
obtain approximate solutions of the problem of minimizing

Cx) = 3 waCalx)

where x is n-bit string, w, are real weights and each Cj is
a boolean function
e Max-Cut is one such problem, with every w, equal to 1 and
each C, of the form
X; D X;
* The maximum satisfiability (MAX-SAT) and weighted

maximum satisfiability (weighted MAX-SAT) are other
examples of that kind of problems
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Boolean functions and Hamiltonians

e For each boolean C, we can find a Hamiltonian H; of the
form

aol + Za,z +Y aZZ+ > awZiZiZ + -

i<j i<j<k

such that for every string x it holds that C4(x) = (x| Ha |x)
¢ Then, minimizing C(x) is equivalent to finding the ground

state of
Hf = Z WaHa
a

since Hy is diagonal and (x| Hy |x) = C(x).

z i-3z T 31+ 32
71 © T 11122, D), z; U-iZ:12,... 2
siNwy | 21— Y2+ 2 — 21 Zo) || Ny 2 * 11,0 - 2))
o Vay | 21— Y2+ 2o+ 21 20) || Vi, 2 I— %LU+ 2)
TZs | 4 X T+ 2o~ ZaZ) | @1 = 3 | 3T+ 3(Z1 — Do+ Z12,)

Image credits: Stuart Hadfield https://arxiv.org/pdf/1804.09130.pdf 154251
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The parametrized states of QAOA

e QAOA is an adaptation of the adiabatic model to
gate-based quantum computers

e Remember that the adiabatic Hamiltonian was

t t
H(t) = (1= 2)H; + H

with H; = — 37, X;

* As an approximation of the evolution of the system, we
consider parametrized states of the form

, — e_iIBPHie_i'Ypr . e_iﬁZHie_iVZer_i[% Hie_i'W Hy S
Y

where p > 1 and
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Optimization with QAOA

e QAOA is a hybrid method in which both a quantum and
classical computer are used
e The steps are:

© Choose a value for p and some initial angles 3, v
® Prepare the state |3,~)

© Estimate the energy £(3,7) = (8,v| Hr |8,7) of [3,7)
@ Vary 3 and « in order to minimize E(3,7)
@ If the stopping criterium is met, stop. Else, go to 2

e Step 2 is carried out on the quantum computer and steps
1, 3 and 4, on a classical one
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How to prepare |3, )

e We already know that |s) = 22" |x) can be prepared

with Hadamard gates

e Each e %X is a rotation Ry(25«) or equivalently

X)) —{ H - Rz(28k)

H

e To implement e~"" we only need to consider cases of

the form _
e*"Yqu L

because

¢ All terms of the form Z;, -+ Zj commute
® The weights in H; = ) waH, are “absorbed” by the angles

~y
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Implementing e "

—ivkZ 2 s g . .
"kh 4y is diagonal in the computational

Notice that e
basis
In fact, for a binary string x = xq ... X, it acts on |x) as
* |x) » e |x)ifx, & ®x; =0 mod 2
° |x) —» e [x)ifx, - @x;, =1 mod 2

¢ This is very similar to the action of a R rotation
Then, we can:

* Compute the parity x;, @ --- @ x; with CNOT gates
® Apply Rz(2+«) on the qubit where we have computed the

parity
* Uncompute the parity
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An example

* Imagine that we are working with 4 qubits and we want to
implement e~"741%24

e We can use the following circuit:

X4
X2
X3
|X4) —D—D— Rz(27) —D—D
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Estimating the energy

e Estimating the energy is very easy in the case of QAOA
¢ We repeat the following process a fixed number of times:
@ Prepare the state |3,~)
® Measure it to obtain a string x
©® Compute C(x)
and then we average the results

e This works because if

By =Y alx)

xe{0,1}"

then

BAlH 1B, = Y laPC(x)

xe€{0,1}"

e |t is also interesting to keep the string x with minimum
value C(x) over all we obtain when we measure
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Some comments on QAOA

e For the procedure to be efficient, H; must have a number
of terms e %44 that is polynomial in the number n of
qubits and the number m of clauses Cy(x) of C(x)

e |f a clause C4(x) only involves k bits, then its translation H,
will involve terms with at most k Pauli matrices Z;

* Thus, if p is a constant independent of n and m and all
clauses involve at most k bits (also independent of n and
m) then the number of gates will be polynomial in nand m

¢ This is the case, for example, of problems such as MaxCut
or Max 3-SAT

e When p — oo, the ground state of |3, ) tends to the
ground state of H;

¢ Interesting results can be obtained in some cases even for
small p

e The choice of classical optimizer is important
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Applying QAQOA for particle track reconst

Computing and Software for Big Science  (2020) 4:1
https//doi.org/10.1007/541781-019-0032-5

ORIGINAL ARTICLE

Check for
Updates

A Pattern Recognition Algorithm for Quantum Annealers
Frédéric Bapst' © - Wahid Bhimji? - Paolo Calafiura? - Heather Gray**® - Wim Lavrijsen? - Lucy Linder' - Alex Smith?

Received: 1 March 2019 / Accepted: 29 November 2019
©The Author(s) 2019

Abstract
The reconstruction of charged particles will be a key puting chall for the high-luminosity Large Hadron Collider
(HL-LHC) where increased data rates lead to a large increase in running time for current pattern recognition algorithms. An

alternative approach explored here exp pattern ition as a quad: ined binary optimization (QUBO),
which allows algorithms to be run on classical and quantum annealers. While the overall timing of the proposed approach
and its scaling has still to be measured and studied, we demonstrate that, in terms of efficiency and purity, the same phys-
ics performance of the LHC tracking algorithms can be achieved. More research will be needed to achieve comparable
performance in HL-LHC conditi asi ing track density d the purity of the QUBO track segment classifier.

y Quantum - Pattern ition - HEP particle tracking
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Applying QAOA for particle track reconstruction (2)

e QUBO formulation to select the best pairs of triplets by
minimizing

O(a,b, T)=Y aTi+> bTT;

where the a; are bias weights expressing quality of the
triplets (all equal) and the b;; are coupling strengths
between triplets

¢ From this formulation, QAOA is planned to be applied on
Rigetti computers (work by Eric Rohm at Lawrence
Berkeley National Laboratory)

bj-0 - l (3 N ignored -0 Vconﬂicts non-exhaustiv
' “ o o Q. . -
‘ R o ™o
N o
no shared hits o el e
&m0 emnv0 quadruplets .
- Q_
Mo SSo _~0
~~ ~o Swgoo—o— oo
I bij-C (> 0)
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Part XV

Variational Quantum Eigensolver:

endless forms most beautiful
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VQE: Variational Quantum Eigensolver

e QAOA can be seen as a particular case of a more general
algorithm: the Variational Quantum Eigensolver (VQE)

* Now, we will have a general Hamiltonian Hy (with a
polynomial number of terms) and we want to approximate
its ground state

¢ Instead of the parametrized state |3, ) of QAOA we will
use

* An initial state |¢) that is easy to prepare (it could be just
0))

® A parametrized unitary U(0) that is called a variational
form

e We can create an ansatz

[¥(0)) = U(0) [¥)

and try to minimize its energy with respect to H; by varying
the parameters
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The variational principle

e Since H; is a Hermitian matrix, it has real eigenvalues \;
and an associated orthonormal basis of eigenvectors |¢;)

« Then, we can write |¢(8)) as a linear combination
[¥(0)) = Zai i)
e The energy of |4()) is
(W(O) Hr [9(0)) = > lailPA;

i
e If A\pin is the minimum of the eigenvalues then

min ((6)] Hr [¥(6)) = Amin
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Approximating the ground state with VQE

e VQE is also a hybrid method in which both a quantum and
classical computer are used
e The steps are:
@ Choose an initial state |¢), a variational form U(¢) and
some initial vector 6
@ Prepare the state [(0)) = U(0) |¢)
© Estimate the energy E(0) = (y(0)| Hr [1(0)) of |4(0))
@ Vary 0 in order to minimize E(6)
@ |If the stopping criterium is met, stop. Else, go to 2
e Step 2 is carried out on the quantum computer and steps
1, 3 and 4, on a classical one
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Estimating the energy of a state

¢ The Hamiltonian can be always expressed as a linear
combination of tensor product of Paulis

e For instance ’
H; = ZZ1 Z3 —3X1Y3Z,

e Given |¢), we can use linearity and evaluate
1
(WIH ) = 7 (W1 Z1Z5 |[¢) = 3 (] X YaZa [¢)
¢ To estimate (| Z1Z3 |¢)) we can just measure [¢)) in the
computational basis and average the energies of the

results (which will be 1 or -1 for each individual
measurement result).
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Estimating the energy of a state (2)
e To estimate (| X1 Y3Z4 |¢)) we can notice that
X = HZH

and
Y = SHZHSt

e Then (y| X1 YsZ4 ) is equal to
(W(H® 1® SH® NZ1ZsZ4(H® | @ HST @ 1) |¢)

e Thus, we can just measure the energy on ZyZ3Z4 of
(H® l® HS' ® 1) ) because

((Hete Hsf®l)|¢>)T — W[(Ho 1o SH® )

¢ Notice that this is equivalent to measuring in a different

basis
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Simulating molecules with VQE

* VQE has been used to estimate ground states of several
molecules

e The fermionic Hamiltonian has to be translated into a qubit
Hamiltonian (Jordan-Wigner, Bravyi-Kitaev...)
¢ Information of the problem is used for:
® The initial state (vacuum state |0), Hartree-Fock...)
® The variational form (Unitary Coupled-Cluster Single and
Double excitations...)

a b c
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Image credits: Kandala, Mezzacapo, Temme, Takita, Brink, Chow, Gambetta. Nature 549, 242—-246 (2017)
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Finding excited states

e We can also use VQE to find excited states (eigenstates
that are not the ground state)

¢ Once we have the ground state |¢g) = U(6p) 1), we
consider the Hamiltonian

Hi = Hi + Clio) (ol

* Then, we have that (¢| Hf |¢) is

(ol Hr l@) + C (ip|ho) (tbole) = (| Hr ) + C| (o) [P

e if C is bigger than the difference between the ground
energy and the next energy level of Hy, then |¢g) is not the
ground state of H;
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Computing inner products of parametrized states

e To compute the inner product in the expression of the
energy we can notice that |¢o) = U(6p) |¢) and that the
new states that we try will be of the form |p) = U(0) |¢) for
some 6

e Then, it is easy to estimate | (1|y) |2 by running the circuit
of the figure and computing the relative frequency of |0)
because

| (wole) |2 = (0] VIU(80) U(O) V |0)
where V is a unitary such that V' [0) = [¢)

0
0) —— V [ U(6) — U'(6o) — Vi
0)
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An application of VQE in High Energy Physics

e Work by Li, Macridin, Spentzouris - Fermilab (2019)
¢ Rabi Hamiltonian: two-level system (TLS) coupled to a
photon mode

H = waa' + %Z +g(a' +a)X

e Number-basis binary encoding: photon mode truncated to
up to 3 photons

Q
SZi+ 5%+ 9V +2X %

g 3w
+=Xo X1 Xo + Yo Y1 Xo +
\/5012 0r1A2 )

. - {Ry(eo)HRz(Hl) RY(HG)HRZ(97)|
HU@) = {{Ry (62) {Rz (6s) RY(08>HRZ<09>TRY (610) HRz (011 }

. - Rz (05) 'IRY (012)HRZ(013)}'
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Results on simulator and Rigetti’'s quantum computers
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Part XVI

Quantum Machine Learning: a

marriage made in heaven
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What | talk about when | talk about Quantum Machine

Learning

data processing device

C - classical, Q - quantum

data generating system

Image credits: Figure taken from Supervised Learning with Quantum Computers. Schuld, Petruccione (2018)
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QBLAS: The Quantum Basic Linear Algebra

Subroutines

¢ A number of algorithms in Quantum Machine Learning
(QML) rely on the exponential speedup of methods such
as

® Quantum Fourier Transform
® Quantum Phase Estimation
e HHL

e We refer to these methods as Quantum Basic Linear
Algebra Subroutines (QBLAS)

e Other quantum subroutines used in QML include amplitude
amplification and quantum annealing

e Some common problems are how to load the input, how to
read the output and the size of the circuits
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QRAM: The elephant in the room

e A Quantum Random Access Memory should allow queries
in superposition

e Several architectures have been proposed (for instance,
the “bucket brigade”) but further investigation is needed

¢ Loading data can become a bottleneck for many QML
algorithms

o
~

Input: |010) [0)

11
| |

1) o)

— T 7

o) 10) |®)

Ly A p N 4

|m000> ‘mom) |’mom) |m011) |m100) |m101) |m110) |m111)

Qutrit in wait state
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Translational QML and speedups

Method Speedup Amplitude HHL Adiabatic gRAM
amplification

Bayesian OWN)  Yes Yes No No

inference!06107

Online OWN)  Yes No No Optional

perceptron!©®

Least-squares  O(logN)* Yes Yes No Yes

fitting®

Classical OWN)  Yes/No Optional/ No/Yes  Optional

Boltzmann No

machine?®

Quantum O(logN)* Optional/No No No/Yes  No

Boltzmann

maching?26!

Quantum O(logN)* No Yes No Optional

PCAll

Quantum O(logN)* No Yes No Yes

support vector

machine!®

Quantum OWN)  Yes No No No

reinforcement

learning3®

*There exist important caveats that can limit the applicability of the

method>.

Image credits: Table taken from Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd. Nature 549, 195-202(2017)
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QML in the times on NISQ

¢ Noisy Intermediate-Scale Quantum computers are

® Subjet to noise (not fault-tolerant)
¢ Limited in the number of qubits (50-100)
® Not fully-connected

¢ Despite these drawbacks, they may be useful for QML

Noisy Intermediate Scale Quantum

where we ‘computing
are today / NISQapplication areas
10 / e Quantum chemistry
/’/ « Optimization
% 102 5 * Machine learning
g error correction
T () threshold
S / fault-tolerant QC
© 104
s within 5
10 years
I f
10 100 1,000 10,000 100,000 ™

number of physical qubits
.

“Quanturm computing in the NISQ era and beyond” Preskill, 2018 https:Jianv org/abs/1801 00862
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Part XVII

Quantum Support Vector Machines:

exploiting the kernel trick
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Support Vector Machines

e Support Vector Machines (SVM) are a very popular
machine learning algorithm used for data classification

e The main idea is to find a hyperplane that separates data
from two different classes with the maximum possible

margin
XZ Hl HZ H3
{
°® [
o @
.. [ 3
NN
~ 0
© ©)
o~ o
o Ogp

Image credits: wikipedia.org
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Finding the hyperplane

e We are given training data points (x;, y;) where the x; are
vectors of real numbers and y; € {1, -1}

* The problem of finding the separating hyperplane with the
biggest margin can be formulated as

o1 .
Minimize EHWHZ subject to y;j(w - x; + b) > 1

Image credits: John Daniel, towardsdatascience.com 183/251



The soft-margin case

¢ In the “soft-margin” case we introduce a hyperparameter
C > 0 and reformulate the problem as

o
Minimize EHWH2 + Czl:g,-

subject to
Yi(w-x; +b) >1-¢, >0

o
NN © o
RPN o
[Nes © ©
O X N x4 O
<o <>‘~\’/ g . o
koS \\ AN
o o o
o
o

Image credits: Rishabh Misra, towardsdatascience.com 184/251



Dual formulation of SVM

¢ An equivalent formulation of the SVM optimization problem
is this dual formulation

- 1
Maximize Z =5 Z yiyjaiog (X - X))
i i,j

subject to
0<a;<C Zai}’izo
i

e From the values «; we can recover b and w. In fact
w= Z i YiXi
i
and to classify a point x we compute

W'X+b:Za;y;(Xi~X)+b
i
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Non-linear separation

e A common technique to improve classification with Support
Vector Machines is to embed the data points x; into a
higher-dimensional space using a feature map ¢(x;)

Input Space Feature Space

Image credits: C. Moreira, “Learning To Rank Academic Experts’, Master Thesis, Technical University of Lisbon,
2011
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The Kernel Trick

* We can easily incorporate the feature map in our
formulation of the dual problem for the SVM

Maximize > " a; — % > yiyjaiey (6(x) - 6(x;))
i ij

subject to

0<a;<C Zaiyl:o
e Again, we can obtain w as |
w=>"aiyio(x)
i
and to classify a point x we only need to compute

w-x+b= Zai}’i (o(x1) - ¢(x)) + b

* The function K(x;, X;) = ¢(x;) - ¢(x;) is called “kernel”
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Computing kernel functions with quantum computers

e In 2019, Havlicek, Cércoles, Temme et al. proposed using
quantum computers as kernel estimators

e Each data point x; is embedded in a Hilbert space by
means of a variational circuit Uy(x;) such that
Us(x;) 10) = |o(xi))

* We know we can | ($(x;)|#(x;)) |? by running the circuit of
the figure and computing the relative frequency of |0)

0) —
0) — Us(xi) — UL(x)
0) —
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Using QSVM in High Energy Physics

Application of Quantum Machine Learning
to HEP Analysis at LHC using Quantum Computer
Simulators and Quantum Computer Hardware

Sau Lan Wu
I am new in this field, since two years.
| have assembled an international and interdisciplinary team of
High Energy Physicists and Quantum Computing Scientists:

Jay Chan, Alkaid Cheng, Wen Guan, Shaojun Sun, Alex Wang, Sau Lan Wu, Rui Zhang, Chen Zhou
Physics Department, Uni y of W
Miron Livny
Computer Sciences Department, Uni ity of

Federico Carminati, Alberto Di Meglio

CERN Quantum Technology Initiative, IT Department, CERN
Panagiotis Barkoutsos, Ivano Tavernelli, Stefan Woerner, Jennifer Glick
IBM Research Zurich and IBM T.J. Watson Research Center
Andy Li, Joseph Lykken, Panagiotis Spentzouris
Quantum Institute, Fermilab
Samuel Yen-Chi Chen, Shinjae Yoo
c . N L

Tzu-Chieh Wei
C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook
Pavel Lougovski, Sanjay Padhi, Simone Severini, Dewayne Walker
Quantum Computing and Al Research, Amazon Web Services

4 November, 2020
QuantHEP Seminar
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Using QSVM in High Energy Physics (2)

¢ Classification of Higgs events (H — vy and H — )

Method 2: Employing Quantum SVM Kernel method with
Amazon simulator for ttH (H — yy) analysis

1.0
c =
2 ttH T LA
0.8 (ttH, 3200 events)
@ 3200 gvents \
o6 10 qubits QSVM Kernel
o IBM simulator
c ___ IBM, QSVM Kernel, 3200 events,
304 AUC= 0.886 + 0.006 " QSVM Kernel
- Amazon Braket, QSVM Kernel, .
2 " 3200 events, AUC= 0.886 = 0.006 Amazon simulator
® 0.2 SVM, 3200 events, AUC= 0.879 x 0.007 |~ BDT
a —— BDT, 3200 events, AUC= 0.878 + 0.007
o'?).o 0.2 0.4 0.6 0.8 1.0 SVM

Signal acceptance

Image credits: Sau Lan Wu et al.
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Using QSVM in High Energy Physics (2)

Method 2: Employing Quantum SVM Kernel method with
Amazon simulator for ttH (H — py) analysis
0.91

ttH
0.89 I'
0.87 - ]
AUC vs o.85 -1
number of events v
2 0.83
<
0.81
0.79 }--1-- —}— IBM, QSVM Kernel, 10 Qubits ]
" —}— Amazon, QSVM Kernel, 10 Qubits
0.77 }-—- ~}— SVM, 10 Variables
—}— BDT, 10 Variables
0.75 . + . .
400 800 1600 3200

Number of Events

Image credits: Sau Lan Wu et al.
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Part XVIII

Quantum Neural Networks: Deep

Learning meets Quantum
Computing
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What is a Quantum Neural Network

e Quantum Neural Networks or Variational Quantum
Classifiers are parametrized quantum circuits that can be
“trained” on data and used for classification tasks

¢ The most common architecture is shown in the figure
below: a feature map that embeds the data point into the
Hilbert space and a variational form that performs the
classification

0) — =2 )

10) — o~ = =

0) — g W@ HA== ) f)eC
0) — — = 201

0) — A= )

Image credits: Vojtech Havli¢ek et al. https://arxiv.org/pdf/1804.11326.pdf
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Training and classifying with a Quantum Neural

Network

¢ A QNN prepares a state |(x, #)) that depends on the
input data x and the parameters 6

* We measure the state and compute an average value, for
instance

f(x,0) = (b(x,0)| £1 - - - Zn (. 0))

e For each training example x; we have a class y;
e We choose a loss function L and we want to find 6
minimizing

> LW F(x.0)

¢ Once we obtain the optimal value 6,,;, we can predict a
class for x using f(x, Omin)
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Gradients and the parameter shift rule

® To obtain 6,,,, we can use a classical minimizer

¢ |f we need to compute gradients of f the parameter-shift
rule is useful

e Suppose ‘
U(9) — efIGH
with H a Hermitian matrix with eigenvalues +r (r real)
¢ This is the case, for instance, if U is a one-qubit rotation
e Then, we have
o0f(x,0)
00

=r-[f(x.0+5s) — f(x,0 — )]

T
where s = ar

¢ This requires just two extra evaluations of the same circuit
with shifted parameters
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Choosing feature maps and variational forms

2 a
P&
= =
|8

Circuit 6 Circuit 8

Image credits: Sim, Johnson, Aspuru-Guzik. Adv. Quantum Tech. 2(12) (2019)
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The power of quantum neural networks

normalised counts
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classical neural network

easy quantum model

quantum neural network

0.6

0.2

0.0

eigenvalue size (bins = 5)

0.8

0.6

0.2

0.0

Image credits: Amira Abbas et al. https://arxiv.org/pdf/2011.00027.pdf
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Quantum Neural Networks in HEP

Method 1: Employing VQC (Variational Quantum Classifier) with
IBM Q simulator for ttH (H — yy) analysis and H — pyu analysis

1.0

o ey 8 ¥ Say,

c tiH Arcaen,, c Hou*pu- T,
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= 0.8 e = 0.8 S

%] g v %
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[ B, () Sh

< os “ = 06 2

° W 9 Y

c AX R

3 2 3 os A
o 04 S X S
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N PN
] 0.2} ~= BDT, AuC= 0.83 = 0.06 __J‘gr < 0.2} == BDT, AUC= 0.80 = 0.06 N
g | == classical SVM, AUC= 0.83 * 0.04 \“ g ~~- classical SVM, AUC= 0.82 = 0.03
==+ IBM Quantum simulator, AUC= 0.81 + 0.04 \ ==+ IBM Quantum simulator, AUC= 0.83 + 0.05
" . . . i 00 L ; i I
o %.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Signal acceptance Signal acceptance

Image credits: Sau Lan Wu et al.
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Quantum Neural Networks in HEP (2)

Method 1: Employing VQC (Variational Quantum Classifier) with
IBM hardware for ttH (H — py) analysis and H — pu analysis

10 10
pp iiniininy siioinisiy =
- | = "‘—‘-—.u_.'
2 tiH T et s Hop'p L_"—f.'
B 0.8 I-I = = 0.8 S
9 p -‘1‘1 -g—’. LLLH
oo A o, %
2 H h
5 BM Hardware! H T
2 04 i i Ul g oa ¥
= H | =
o o 1
® oz ! ! . | ] 1
© | —=' IBM Quantum simulator, AUC = 0.83 g 021 . IBM Quantum simulator, AUC = 0.83 |17
@ —— IBM Quantum hardware, AUC = 0.82 @ —— IBM Quantum hardware, AUC = 0.81 I
%0 o2 K o2 0g o8 1. 00's o5 vy o5 v 1
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Image credits: Sau Lan Wu et al.
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Quantum Neural Networks in HEP (3)

Background o
— (N
q v
w
ql
v
q e
w

Image credits: Koji Terashi
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Quantum Neural Networks in HEP (4)

. —  — Ry(sin"(x1)) H Rz(cos(x12) -
i U’.n(x) — = —{ Rv(sin(x2)) H Rz(cos-(x22) [—
. L — Ry(sin"(x3)) H Rz(cos(x3?) —
_ u __ — Rx(61) - Rz(64) [-{ Rx(67) -r
i U(e) - = — @-iHt [+ Rx(62) [ Rz(05) [ Rx{0s) [+
_ - — — Rx(03) [ Rz(0¢) || Rx(89) [+

-----------------------------------------------------------------

Image credits: Koji Terashi et al. https://arxiv.org/pdf/2002.09935.pdf
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Quantum Neural Networks in HEP (5)
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Image credits: Koji Terashi et al. https://arxiv.org/pdf/2002.09935.pdf 202/251
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Part XIX

Quantum Generative Adversarial

Networks: this quantum image does
not exist
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GANSs: Generative Adversarial Networks

e Generative Adversarial Networks (GANs) were introduced
by lan Goodfellow and his collaborators in 2014

e The objective, is, given a training dataset, learning to
generate new, unseen data with the same distribution

* Impressive results have been achieved in several different
applications

Image credits: Nvidia/StyleGAN https://arxiv.org/abs/1812.04948 204/251


https://arxiv.org/abs/1812.04948

Architecture of a GAN

¢ Two neural networks: generator and discriminator
* The generator tries to “fool” the generator

e The discriminator tries to distinguish between real and fake
images

Training set ZV /

a AT

-

Generator Fake image

Discriminator
IQ eal

Fake

Image credits: Thalles Silva - www.freecodecamp.org
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GAN training

e The generator and discriminator are trained in alternating
phases

¢ The discriminator tries to maximize
Ex[log D(x)] + EZ[log (1 — D(G(2)))]
® The generator can try to minimize
E:[log (1 — D(G(2)))]
or (in practice) to maximize

E[log D(G(2))]
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Quantum GANSs

¢ A Quantum GAN replaces the generator or the
discriminator (or both) with a quantum circuit

PHYSICAL REVIEW LETTERS 121, 040502 (2018)
| Featured in Physics _|

Quantum Generative Adversarial Learning

Seth Lloyd' and Christian Weedbrook®
'Massachusetts Institute of Technology, Department of Mechanical Engineering,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
*Xanadu, 372 Richmond Street W, Toronto, Ontario M5V 1X6, Canada

® (Received 30 April 2018; published 26 July 2018)

PHYSICAL REVIEW A 98, 012324 (2018)

Quantum generative adversarial networks

Pierre-Luc Dallaire-Demers’ and Nathan Killoran
Xanadu, 372 Richmond Street W, Toronto, Ontario M5V 1X6, Canada

M  (Received 7 May 2018; published 23 July 2018)
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Using a QGAN to load a probability distribution

npj | Quantum Information wuw.nature.cominpjai

ARTICLE OPEN
Quantum Generative Adversarial Networks for learning
and loading random distributions

Christa Zoufal (3%, Aurélien Lucchi® and Stefan Woerner

Quantum algorithms have the potential to outperform their classical counterparts in a variety of tasks. The realization of the
advantage often requires the ability to load classical data efficiently into quantum states. However, the best known methods
require O(2") gates to load an exact representation of a generic data structure into an n-qubit state. This scaling can easily
predominate the complexity of a quantum algorithm and, thereby, impair potential quantum advantage. Our work presents a
hybrid quantum-classical algorithm for efficient, approximate quantum state loading. More precisely, we use quantum Generative
Adversarial Networks (qGANs) to facilitate efficient learning and loading of generic probability distributions - implicitly given by
data samples - into quantum states. Through the interplay of a quantum channel, such as a variational quantum circuit, and a
classical neural network, the qGAN can learn a representation of the probability distribution underlying the data samples and load it
into a quantum state. The loading requires O(poly(n)) gates and can thus enable the use of potentially advantageous quantum
algorithms, such as Quantum Amplitude Estimation. We implement the gGAN distribution learning and loading method with Qiskit
and test it using a quantum simulation as well as actual quantum processors provided by the IBM Q Experience. Furthermore, we
employ quantum simulation to demonstrate the use of the trained quantum channel in a quantum finance application.

npj Quantum Information (2019)5:103 ; https://doi.org/10.1038/541534-019-0223-2
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Quantum generator in IBM’s QGAN

(a)

|ge)

(b)

UETLt =
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Application of QGANs in HEP: Calorimeter output

¢ Two-dimensional projection of 3D energy shower

Generated

Real
7 0.25
6
0.2
5
& 0.15
F 0.1
2
0.05
1
0 0
0 2 4 [

2 0 2 4 6
Longitudinal Longitudinal

Image credits: Su Yeon Chang, Sofia Vallecorsa (CERN openlab)
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To learn more...

Quantum Machine Learning in High Energy Physics

Wen Guan'!, Gabriel Perdue?, Arthur Pesah®, Maria Schuld?,
Koji Terashi’®, Sofia Vallecorsa®, Jean-Roch Vlimant”

! University of Wisconsin-Madison, Madison, WI, USA 53706

2 Fermi National Accelerator Laboratory, Fermilab Quantum Institute, PO Box 500,
Batavia, IL, USA 60510-0500

3 Technical University of Denmark, DTU Compute, Lyngby, DK

4 University of KwaZulu-Natal School of Chemistry and Physics, Durban, ZA 4000
5 ICEPP, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, JP 300-1153

6 CERN, IT, 1, Esplanade des Particules, Geneva, CH 1211

7 California Institute of Technology, PMA, Pasadena, CA, USA 91125-0002

Image credits: https://arxiv.org/pdf/2005.08582.pdf

Quantum machine learning and its supremacy in high energy physics

Kapil K. Sharma

DY Patil International University,
Sect-29, Nigdi Pradhikaran, Akurdi, Pune, Maharashtra 411044, India

Image credits: Modern Physics Letters A
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Part XX

Errare quantum est: quantum error

correction
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Quantum computers and errors: a problem without

solution?

¢ A series of problems seem to prevent the possibility of
fault-tolerant quantum computing:

® The no-cloning theorem
® The collapse of the state after measurement
® Unitary operations are continuous (not discrete)
e Despite these problems, quantum error correction is
possible
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A classical error-correcting code

e For quantum error correction, we can try use ideas from
classical error correction

The simplest approach is to use redundancy to code the
information

0 — 000
1—=111

e We use majority voting to “correct” errors
000,001,010,100 — 000

111,110,101,011 — 111

In this way, we can correct errors that affect only a single bit
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A quantum code that corrects flip errors in a single

qubit

We can extend the previous idea to the quantum domain
We use three qubits to code one

0) =

1) —
By linearity

000)
1111)

a|0) 4+ B|1) — «|000) + 5 [111)

It does NOT violate the no-cloning theorem
The circuit for encoding is simple

1)
|0) —

I

0) —

215/251



Detecting the flip of a single qubit

e How can we detect if a qubit has flipped without measuring
it?

e We use ancillary qubits to detect the error syndrome

|000),[111) — |00) |001),]110) — |01)
|010),[101) — |10) [100),]011) — |11)
)
0) — Error
0) &
0) O—D
0) O—D
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Correcting the flip of a single qubit

¢ Now, we can measure the syndrome qubits and apply the
appropriate error correction operation

* |f we obtain 00, we do nothing

* If we obtain 01, we invert the third qubit

¢ |f we obtain 10, we invert the second qubit
¢ |f we obtain 11, we invert the first qubit

¢ |n this way, we are also “discretizing” the errors. If the error
acts as

1000) — v/1 — ¢2]000) + ¢ |001)

with the syndrome register we would have

V/1 = €2|000) |00) + ¢ |001) |01)

and, when we measure, it will collapse to either |000) |00)
or |001)|01) and then we can correct
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A quantum code to correc

¢ Another type of error that

t phase inversion errors

a qubit can suffer is a phase

inversion (as if an unwanted Z gate was applied to it)

al0) + 5]
* We can use the following
0)
1)

¢ By linearity
al0)+4|1) —
|¥)

1) = al0) — B8[1)
code
= |+ ++)

== =)

ot +4)+ Bl )

H]-

0) —®

-

0) —4
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Detecting phase inversion errors

It is almost equal to the case of qubit flip

We only need to take into account that HZH = X
But X acts as a qubit flip

Thus, we can use the following circuit

) i A ]
0 Error |-{A}—|—4————[H}-
o —&{A— Al ]
0) O—D

0) O—D
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Correcting phase inversion errors

e Again, it is enough to measure the syndrome and measure
accordingly
* |f we obtain 00, we do nothing
* |f we obtain 01, we apply Z to the third qubit
* |f we obtain 10, we apply Z to the second qubit
¢ |f we obtain 11, we apply Z to the third qubit

e And we obtain “discretization” of the errors for free. For
instance

== ) V== =) e+ )
with the syndrome register would be

V1= e|— = -)|00) +¢|— + —) [10)

and, when we measure, it would collapse to either
|- ——)]00) or |- + —) |10) and we know how to correct.
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The codes in action

e Seeing the codes in action can be illuminating
e We will use Quirk

¢ Qubit flip error-correcting code

® Phase inversion error-correcting code

Mens || Epont || ClrCicut | ClearALL Make Gate
Proves Displays ~ HallTums  QuarterTums [EighthTums _Spinning  _Formulaic Sampling
3 A z fo] [ s [st] [7['] [2]2t] [20o] [22]re] []2)]ae
§ (X TPT] Y vEIvEL IVAIVE] | v vt (YO o) (WARAZ| ] Y) | veo
= "
ofe & ] el e [t [0 pezlre] [0
10 »— ot —(P— on on o LA | 000_
o1
oth | al o -l
i o
10 D— ot — on on on b
100
o on CR o
= o_
&
10 on on — izl m_
o W
nput] At e |
° o Uyl Bl FT 1) -1 +
ol o] {orrlore] [} { ] [
Xl o | o [ nputlB=# | | 4a | -A HAL-A L]~
g B_Jootaut mod R moo
B |1 o] [Pt R=# ~ xA fa! r
§ e oct | [ E[3C] foetfons p![B=#| |+a8|-a8 ENEEE
caloal FElRE B Al A
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XIY Probes Ordor Frequency Inputs Arhmetic  Compare  Modular Scalar  Custom Gates
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Combining both codes: Shor’s code

e We can combine both codes using 9 qubits (Shor’s code)
* The code is

0) =

1) =

(1000) +|111))(|000) + |111))(|000) + [111))

7
—(|OOO> — [111))(|000) — |111))(]000) — [111))
7
10> ’T‘
"]
10> m
O
o .
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Detecting qubit flips with Shor’s code

e We can use the following syndromes to detect qubit flips
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Detecting phase inversion errors with Shor’s code

e We can use the following syndromes to detect phase
inversions

fany

A
fany
>

N

D
fany
>

fan)
Y

fanY
A\

fany
A
A

>
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Correcting any one-qubit error with Shor’s code

¢ Discretization, again, allows us to use Shor’s code to
correct errors in a single qubit

e The key is to note that Y = iXZ and that any one-qubit
gate G can be written in the form

G=agl+aX+ayY+azZ

e Each error will have different syndromes for qubit flip (X)
and for qubit-inversion (Z)

* \WWhen we measure, we discretize and obtain a concrete
type of error that we can correct with the syndrome
information
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Shor’s code in action

¢ Qubit flip syndrome
® Phase inversion syndrome

- o (-
ml i ol 7
L= /L L= L=
: - o (-
: 1] (-
: -+
o0 o«
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Logical operations with Shor’s code

We can perform quantum transformations on the logical
qubits of Shor’s code

For instance, if we use Zy 2,252,425 2527 25 Z4 its effect is
0, — 1), 1) —10),

so it acts like X
Analogously, Xi X2X3X4X5X6X7X3Xg acts likea Z gate

10), —0), 1) ——11),

Other gates can be implemented in a similar way or with
other techniques (gate teleportation)
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Stabilizer codes

e Many quantum error-correcting codes are examples of
stabilizer codes

¢ |n stabilizer codes, all the states are fixed points of certain
tensor products of Pauli matrices

¢ For instance, for the code spanned by {|000),[111)} the
stabilizers are

hebohkh Z1020K Z1beZy Lol ez

which, under multiplication, form a (commutative) group
generated by

Z1®Zg®/3 Z1®12®23

e |t is important to notice that the eigenvalues of tensor
products of Paulis are 1 or -1
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Shor’s code as a stabilizer code

e Both

(|000> +[111))(]000) + [111))(|000) + [111))

@l

and

1
ﬁﬂOOO} —1111))(]000) — |111))(|000) — |111))

are stabilized by
X1 XoX3 Xy X5 Xg Xy X5 Xs X7 XgXo

2\2 ZoZs ZZs ZsZs ZiZs  ZeZe
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Measuring syndromes with stabilizer codes

¢ For a state to be in the code, it needs to be stabilized by
each generator of the stabilizer group

e We can measure the syndrome associated to one of the
generators G by using the circuit of the figure

e The state just before measuring is

210) (1) + G 149) + 5 1) (1) — G 1)

so if G [¢) = |¢) we will measure |0) and if G |¢) = — |¢)
we will measure |1)

0)
%) ]
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Fault-tolerant quantum computing

¢ In fault-tolerant quantum computing, every operation (state
preparation, gate application, error correction and
measurements) is performed with a probability O(p?) of
two errors occurring in a given block (p being the
probability of an individual error)

e This and code concatenation, allows us to prove a very
important result: the threshold theorem

Theorem (Threshold theorem - informal version)

If the error probability of each physical operation is below a
threshold py,, it is possible to reduce arbitrarily the error
probability of any quantum computation without increasing too
much the size of the circuit, under reasonable assumptions on
the error model.
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Part XXI

Ad astra: quantum supremacy and

the future of quantum computing
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What is quantum supremacy?

Quantum supremacy

Quantum supremacy is a term coined by John Preskill that
refers to the moment in which a quantum computer performs a
task in much less time than it would take on a classical

QUANTUM
SUPREMACY

Image credits: Domain of Science https://www.youtube.com/watch?v=90U_SmKy£fGI
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Google’s quantum supremacy

Article

Quantum supremacy using aprogrammable
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How did Google achieve quantum supremacy?

e Google used a 53 qubit chip (Sycamore) to run
(pseudo)-random circuits with one and two qubit gates

¢ This task is not especially useful in practice (might have an
application in certified random bit generation)

e We believe this task to be impossible to do efficiently on a
classical computer (it would cause a collapse of the
polynomial hierarchy)

Image credits: https://ai.googleblog.com/

236/251



When can we simulate quantum circuits efficiently?

e The complexity of simulating quantum circuits on a
classical computer does not depend only on the number of
qubits and gates

e |f parts of the circuit are not entangled, we can simulate
them independently

¢ |f the gates used in the circuit come from restricted sets,
we may be able to simulate them efficiently

Theorem (Gottesman - Knill)

Any circuit that only uses gates from the set {H, X, CNOT, S}
plus preparation of the state |0) and measurements in the

computational basis can be simulated efficiently with a classical
algorithm
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Sampling strings from random circuits
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Image credits: M. Sohaib Alam and Will Zeng Medium post
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Quantum supremacy experiment results
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IBM’s challenge to Google’s quantum supremacy

53- and 54-Qubit Sycamore Circuits with Single
Precision Storage to Disk (8 bytes per amplitude)
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Image credits: https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
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Quantum circuit simulation in polynomial space
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Quantum computational advantage using photons
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Boson sampling

o) =« = [1n)|Ons1) =« +[Om)

S
Zyﬂni ), ) ..,n$,§>>
S

Ps = |ys|?

Image credits: Gard et al. https://arxiv.org/abs/1406.6767
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Complexity of Boson sampling
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Image credits: Gard et al. https://arxiv.org/abs/1406.6767
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Quantum computational advantage using photons:

results
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Image credits: Han-Sen Zhong et al. Science, 3 Dec 2020

245/251


https://science.sciencemag.org/content/early/2020/12/02/science.abe8770

Google Quantum Roadmap

Google Al

We are building an error-corrected quantum computer Quantum
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Image credits: H. Neven Google Quantum Summer Symposium 2020
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Honeywell Quantum Roadmap

HONEYWELL QUANTUM SOLUTIONS

Noisy Intermediate-Scale Quantum (NIS@) Era 0
2020 Fault-Tolerant Quantum Computing|

Model H1 Model H2 Model H3 Model H4 Model H5

Massive scaling of physical qubits and computing power
lon trap fabrication in Honeywell's foundry
Key enabling technologies already demonstrated for generational upgrades

Image credits: Honeywell news post
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IBM Quantum Roadmap

Scaling IBM Quantum technology

18M Q System One (rseass Mext family of 18M Quantum systems
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lonQ Quantum Roadmap
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My wishlist for the quantum computing future

e (More) confirmation of quantum supremacy

¢ Practical applications on NISQ computers

e Advances in qubit technologies

e Development of new quantum algorithms with
(exponential) speed-ups

¢ Fault-tolerant quantum computing

CIO/CTO Planning Steps

2019 2022 2026

Image credits: Gartner/IBM
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Thank you for your attention!
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