

ASPERA WP 2: Neutrino Mass

Conveners: A. Giuliani, S. Schoenert, F. Piquemal

Physics motivations

Experiments and projects

Project summaries & ressources

Physics case

- Absolute neutrino mass and neutrino mass hierarchy (SDB, DBD)
- Nature of neutrino : Dirac ($\nu \neq \nu$) or Majorana ($\nu = \nu$) (DBD)
- -Leptonic number violation (DBD)
- Right-handed current interaction (DBD)
- CP violation in leptonic sector (DBD)
- Search of Supersymmetry and new particles (DBD)

SDB: Single Beta Decay

DBD: Double Beta Decay

WP2 neutrino mass F. Piquemal

ASPERA - 2007

Absolute Neutrino mass

Mass Hierarchy

Mass Hierarchy

Degenerate: can be tested by SDB and DBD

Inverted hierarchy: tested by the next generation of $\beta\beta$ experiment

Normal hierarchy: seems inaccessible within 10 years

Nature of neutrino

Dirac neutrino particle \neq antiparticle 4 states $v_L, v_R, \overline{v}_L, \overline{v}_R$ Conservation of global leptonic number

$\begin{array}{c|cccc} Majorana \;neutrino \quad v = \overline{v} & 2 \; states \; \; v_L \; and \; v_R \\ & No \; conservation \; of \; global \; leptonic \; number \end{array}$

If $v_{Majorana}$ and CP violation in leptonic sector -> leptogenesis

WP2 roadmap

Currently Europe has leadership for both single and double beta decay experiments

To improve the sensitivity on neutrino mass by at least a factor 10 whithin 10 years

To select the most sensitive techniques for the next generation of experiments

To support R&D to develop new techniques

Single beta decay

np 3H 3He np $(A,Z) \rightarrow (A,Z+1) + e^{-} + v_e$

 $dN/dE \sim [(E_0 - E_e)^2 - m_{vi}^2]^{1/2:}$

 $m_{\nu_e}^2 = \sum |U_{e_i}|^2 m_i^2$

Extraction of m_v is not model dependent

Two possible approaches

KATRIN Spectrometer

Source (³He) ≠ detector High activity source ~ 2Ci/s Energy resolution: 0.92 eV Integrated beta energy spectrum Size limit

MARE Calorimeter

 β -source (¹⁸⁷Re) = detector

Low activity source ~ 1 Bq/mg

Energy resolution: 5 eV

Measure differential spectrum DN/DE

Can be extended

Different systematics

complementary techniques

Czech Republic – Germany – Russian Federation – United Kingdom – United States

2007: 120 Collaborators from 16 institutions including 30 PhD and diploma students

Tritium source

one of the most complex cryostats ever built:

- 42 sub-assemblies
- 12 cryo circuits
- 6 working fluids
- > 500 sensors
- 7 magnet modules

Main spectrometer

KATRIN

Astroparticle Physics for Europe

Neutrino mass

KATRIN

MARE

Neutrinoless double beta decay

Neutrino mass

$\beta\beta(0\nu)$ observables

Angular distribution

Individual electron energy

Allow to distinguish the mechanism

Background : natural radioactivity, radon, neutrons, muons, $\beta\beta(2\nu)$

Double beta decay

Why several nuclei and why several techniques are required ?

ASPERA

Neutrino mass

Isotope	Q _{ββ} (MeV)	Isotopic abundance (%)	G _{0∨} (yr ⁻¹) x 10 ²⁵		
⁴⁸ Ca	4.271	0.187	2.44		
⁷⁶ Ge	2.040	7.8	0.24		
⁸² Se	2.995	9.2	1.08		
⁹⁶ Zr	3.350	2.8	2.24		
¹⁰⁰ Mo	3.034	9.6	1.75		
¹¹⁶ Cd	2.802	7.5	1.89		
¹³⁰ Te	2.528	33.8	1.70		
¹³⁶ Xe	2.479	8.9	1.81		
¹⁵⁰ Nd	3.367	5.6	8.00		

Astroparticle Physics for Europe

Neutrino mass

 $T_{1/2}^{-1} = F(Q_{\beta\beta}^5, Z)$ $|M^{0\nu}|^2$ $< m_{\nu} >^2$

<m_v> is model dependant

A lot of improvements have been done but still discrepancies Uncertainties for extraction of <m_v>

With background:

$$T_{1/2}^{0\nu}(y) > \frac{\ln 2 \cdot \mathcal{N}}{k_{C.L.}} \cdot \frac{\varepsilon}{A} \cdot \sqrt{\frac{M \cdot t}{N_{Bckg}} \cdot \Delta \varepsilon}$$

M: masse (g) ε : efficiency $K_{C.L.}$: Confidence level \mathcal{N} : Avogadro number t: time (y) N_{Bckg} : Background events (keV⁻¹.g⁻¹.y⁻¹) ΔE: energy resolution (keV)

Today, no technique able to optimize all the parameters

WP2 neutrino mass F. Piquemal

ASPERA - 2007

ASPERA

Neutrino mass

Name	Nucleus	Method	Location	European Members	Others				
Running experiments									
CUORICINO	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US				
NEMO-3	⁸² Se	tracking	Frejus	FR, CZ, UK	US, RU, JP				
Construction funding									
CUORE	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US				
GERDA	⁷⁶ Ge	ionization	LNGS	DE,BE,IT,PO	RU				
		Substantia	l R&D funding	g					
COBRA	¹¹⁶ Cd,	scintillation	LNGS	UK, DE	-				
	¹³⁰ Te								
EXO	¹³⁶ Xe	tracking	WIPP	CH	US, RU, CAN				
MAJORANA	⁷⁶ Ge	ionization	SNOLAB	-	US				
			or DUSEL						
SuperNEMO	⁸² Se	tracking	t.b.d.	FR,CZ,UK,SL	US,RU, JP				
	R&D an	d/or conceptual d	esign, and oth	ner decay modes					
CANDLES	⁴⁸ Ca	scintillation	Oto Lab	-	JP				
CARVEL	⁴⁸ Ca	scintillation	Solotvina		UKR, RU, US				
DCBA	¹⁵⁰ Nd	tracking	t.b.d.	-	JP				
MOON	¹⁰⁰ Mo	tracking	t.b.d.	-	JP				
SNO++	¹⁵⁰ Nd	scintillation	SNOLAB	-	CAN, US +				
TGV	¹⁰⁶ Cd,	electron	Frejus	FR, CZ	RU				
	⁴⁸ Ca	capture, R&D	-						

Cuoricino

 $T_{1/2} > 3.10^{24} \text{ yr} (90\% \text{ CL})$ $< m_v > < 0.2 - 1 \text{ eV} (90\% \text{ CL})$

Expected final sensitivity ~2009: $T_{1/2} > 6.10^{24} \text{ yr} < m_{y} > < 0.1 - 0.7 \text{ eV}$

NEMO 3

France, UK, Russia, Spain, USA, Czech Republic, Ukraine, Finland (30 scientists in Europe)

Tracko-calo running at Modane since 2003 Multi-isotopes 7 kg of ^{100}Mo and 1 kg ^{82}Se

Roadmap for double beta decay search

Current running experiment Cuoricino (bolometers 130Te) and NEMO 3 tracko-calo have ~10 kg of enriched isotopes sensitivities ~0.2 - 0.7 eV

Next generation with 100 – 200 kg enriched source, sensitivities ~30 – 100 meV validation of background for 1 ton detector

In Europe, 3 complementary techniques: Semi-conductors, bolometers and tracko-calo

Several nuclei can be studied: ⁷⁶Ge (check of HM claim), ¹³⁰Te, ⁸²Se (and ¹⁵⁰Nd ?)

R&D to improve technique or to develop new techniques

In case of signal: must be check with other nucleus and techniques. Need of tracko-calo to determine the process

GERDA

Neutrino mass

Germany, Italy, Belgium, Russia (27 scientists in Europe)

Ge diodes in liquid nitrogen Background supression bu removing matter and active veto

PHASE I: 17.9 kg of enriched ⁷⁶Ge

In 1 year of data if B=10⁻² cts/keV/kg/yr

Start 2009 at Gran Sasso, results 2010

 $T_{1/2} > 3 \ 10^{25} \ yr$ $< m_v > < 250 \ meV$

PHASE II: 40 kg of enriched ⁷⁶Ge

if B=10⁻³ cts/keV/kg/an

 $T_{1/2} > 2 \ 10^{26} \text{ yr in 3 years of data} < m_v > < 110 \text{ meV}$

Phase I + II already funded

CUORE

Italy, USA, Spain (12 scientists in Europe)

Bolometer of TeO₂ (¹³⁰Te 203 kg) Background rejection improvement Five years of data N_{bckg} =0.01 cts.keV⁻¹.kg⁻¹.yr⁻¹ $T_{\frac{1}{2}} > 2.1 \ 10^{26} \ yr \qquad <m_v > < 30 - 170 \ meV$ Detector is in construction in Gran Sasso Commissioning: 2010

Operation: 2011

France, UK, Russia, Spain, USA, Japan, Czech Republic, Ukraine, Finland (30 scientists in Europe)

Strategy for double beta decay search

To try to cover the inverted hierarchty \rightarrow to go to 1 ton detectors

Which nuclei?

Which techniques ?

R&D needed after 100 kg ? (it was the case to go from 1 kg to 10 kg and from 10 kg to 100 kg) Difficult to produce today a calendar beyond 2015

Cost of the enriched product $> 50 \text{ M} \in \text{ for 1 ton}$

> 100 M€ per experiment

If Europe support at the level of 50 % 3 experiments → 150 – 200 M€

Ion cyclotron resonance

Allow production of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁵⁰Nd, ¹⁰⁰Mo,... Prototype built by CEA has worked for small quantities (mg) Extrapolation possible in principle to produce 10 – 100 kg

Laser isotopique separation

Could produced ¹⁵⁰Nd in large quantities

Modane underground laboratory extension

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

Excavation of safety gallery 2008 - 2011

Meddinio mas

CAVERN A CROSS SECTION

EXCAVATED AREA 375 m²

INTERNAL CLEARANCE 320 m²

1:100

Modane underground laboratory extension

on the set of the set

COUPE TYPE SALLE A

SECTION EXCAVEÉ 375 m²

SECTION UTILE 320 m³

1:100

Ultra-low background 20 000 m³ cavity

Classical 40 000 m³ cavity

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Single beta decay											
KATRIN											
MARE II											
Double beta decay											
CUORE											
GERDA Phase I + II											
SuperNEMO Canfranc											
SuperNEMO Modane											
		-									
Infrastructures											
Modane extension LSM											
ICR											

Phases	
1. R&D	
2. Construction	
3. Commissioning	
4. Operation	

Experiment	k€
main source	milestones
•KATRIN:	40.000 -
Astrop.Phys.	operation 2010
•MARE I:	5.450
Astrop.Phys.	R&D<2011; construction=2011; operation 2016
•CUORE:	13.900
Astrop. Phys	contruction + commissioning<2012; operation 2017
•GERDA I+II:	5.250
Astrop. Phys	contruction + commissioning<2009; operation 2009
•SuperNEMO:	46.000
Astrop. Phys	R&D < 2009 construction < 2013 Operation 2011

ASPERA

Investment

	total		Europe		presently	presently involved scient		
	Investmen	FTE	Investmen	FTE	total	ASPERA		
KATRIN	40 000	5 000	35 000	5 000				
MARE	5 450	9 205	2 100	4 920	13	10		
CUORE	13900	5240	9 500	3 680	16	12		
GERDA I+II	5 250	9 840	5 250	7 980	35	27		
SuperNEMO	45820	26775	33 000	21 300	36	30		
ICR	17500	3200	14 500	3 200	4	4		
	127 920	59 260	99 350	46 080	104	83		

Need R&D investments beyond 2015 to improve and develop new techniques

Astroparticle Physics for Europe

Plans for 2008 - 2018

Plans up to 2015 are clear:

Single beta decay KATRIN (funded) and MARE (R&D)

Double beta decay: 2 experiments funded GERDA and CUORE (calorimeters) 1 R&D SuperNEMO (tracko-calo)

Results expected in 2013 - 2015

Need significant effort for R&D beyond this phase

Future plans beyond 2015 will depends on the results of 100 kg phase

