High-Level Dosimetry (HLD)

Ygor Aguiar / SY-STI-BMI with input from D. Pramberger, J. Trummer and H. Vincke / HSE-RP-AS

R2E Annual Meeting – 2-3 Feb, 2021 https://indico.cern.ch/event/971222/

CERN radiation environment

Accelerator complex presents a mixed radiation field in the tunnels and adjacent caverns

Impact on the lifetime of the equipment and it can lead to machine downtime

CERN-ACC-NOTE-2015-0042

Radiation Hardness Assurance (RHA)

The monitoring and calculation of radiation levels are a key element to develop a Radiation Hardness Assurance (RHA) procedure.

Mitigation approaches: Rack relocations whenever possible, or implementation of extra shielding

Monitoring and Calculation Working Group (MCWG)

Analysis of the distribution and evolution of the radiation fields along the CERN's accelerator complex

- Radiation data based mainly on:
 - Active dosimeters: Beam Loss Monitor (BLM), RadMon, optical fibers;
 - New monitor installations are constrained to some infrastructure requirements
 - Large coverage but typically limited to dose levels up to 10kGy.
 - Passive dosimeters: RadFET, High-Level Dosimeters (HLD)
 - Easy of deployment \rightarrow no infrastructure requirements
 - Small dimensions \rightarrow can be placed next to equipment
 - Higher dose range \rightarrow RPLs can reach up the MGy
- Fluka simulations \rightarrow benchmark studies

03/02/2021

- Synergy with the main activities in the MCWG
 - provides supplementary radiation level measurements where active dosimeters are not suitable.
- Assessment of irradiation testing conditions
 - Only option for high-dose requirements in Radiation to Materials (R2M) experiments which irradiations can reach up to several MGy, for example.

High-Level Dosimetry (HLD) activity

- **HSE-RP:** annual report of accumulated dose is released roughly every 2 years
- More than 1700 dosimeters in the surveyed areas (around 400 in the PS complex, around 750 in the SPS complex and around 550 in the LHC complex)

CERN-ACC-NOTE-2015-0042

R2E

High-Level Dosimetry (HLD) activity

Monitoring of the accumulated dose is done using two passive dosimetry systems:

Polymer Alanine Dosimeter (PAD)

Dosimeter composed of alanine (C₃H₇NO₂) and a polymer mixture

Low Mid High dose dose dose

Cylinder (length: 2 cm, diameter: 0.4 cm)

Irradiation of alanine creates free radicals \rightarrow proportional to absorbed dose

Readout measurement based on the Electro Spin Resonance (ESR)

Dose range: 1 Gy – 100kGy

Cylinder: **Ag-activated metaphosphate glass** (length: 8.5mm, diameter: 1.5mm)

Irradiation creates Radio-Photo-Luminescence (RPL) and colour centres

Readout measurement based on an in-house setup

Dose range: 1 Gy – MGy

Irradiated RPL dosimeters when being illuminated with UV light

RPLD readout setup

RPL signal

Increased photon absorption by the colour centres for mid and high dose range → reduction in the RPL signal

Need to identify the colour of the dosimeter \rightarrow by **naked eyes**

Mid dose range (around 1kGy) is a critical area high uncertainties for the dose analysis

Point **a** and point **b** correspond to the same RPL signal but different absorved dose!

R2E

Measurement of the transmission light for a blue LED light emission

 \rightarrow correlates to the density of colour centres

 \rightarrow no need for the identification of the dosimeter colour by naked eyes analysis

Increase of colour centres

Solution: Transmission Light

440 nm LED light

Increase of colour centres

RPLD readout (RPL and transmission light)

RPLD readout (RPL and transmission light)

Transmission light is used to:

1) differentiate automatically between transparent and brown region

 Transmission signal in point a is different from the signal in point b

2) analyse problematic dose range with **higher accuracy**

More information: Technical Note EDMS 2275199

System developed by HSE-RP and patented by CERN WO 2014/161732 A1

Conclusions

Monitoring and Calculation of radiation levels are essential to increase the performance and availability of systems

- \rightarrow Mitigation approaches
- \rightarrow RHA methodologies

High-Level Dosimetry (HLD) provides information on accumulated dose in a wide range \rightarrow from Gy to MGy

PAD/RPLs can be placed next to the machines where other dosimeters might not be suitable due to their size or to specific infrastructure requirements

HLD service is **entirely** provided at CERN, including the readout measurement of the dosimeters.

Thank you for your attention!

