0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments

Matteo Cecchetto (CERN, Montpellier Univ.) on behalf of the R2E project

R2E Annual Meeting – 2-3 Feb, 2021 https://indico.cern.ch/event/971222/

Introduction: radiations in the LHC

Radiation sources

Radiation environment mainly composed of **neutrons** in

Tunnel Shielded alcoves

A large number of electronics (mainly **COTS**) operate near the accelerator and are exposed to radiation inducing SEEs

Example - Neutron spectrum in the RR alcove

SEEs: response function

Intermediate energy neutrons from 0.2 to 20 MeV, the device (SRAM) cross section is strongly energy dependent $\varphi_{HEHeq} = \int_{0.2MeV}^{20MeV} w(E) \frac{d\varphi_n(E)}{dE} dE + \int_{20MeV}^{+\infty} \frac{d\varphi_{HEH}(E)}{dE} dE$

Intermediate energy neutrons - major concern with scaling of technology
 Memory response w(E) so far considered from 400 nm Toshiba SRAM

Components – Neutron test facilities

- Test performed at **PTB** (Germany) and **FNG** (Italy)
- Mono-energetic neutron irradiations, from 0.144 to 17 MeV
 - SRAMs of different technologies
 SEU tests with package and delidded

Facility	E _n [MeV]	Reaction	E _{proj} [keV]
PTB	0.144	Li(p,n)	1943
PTB	1.2	T(p,n)	2047
PTB	2.5	T(p,n)	3356
FNG	2.5	D(d,n)	300
PTB	5	D(d,n)	2406
PTB	8	D(d,n)	2524
FNG	14.8	T(d,n)	300
PTB	17	T(d,n)	1264

Momony	Tech	Size
Memory	[nm]	[Mbit]
ISSI	40	32
Cypress	65	16
Cypress	90	8
ESA Monitor	250	16

PTB irradiation room

5

Cross section comparison to saturated value

Ratio between high energy proton (saturated) and neutron cross sections of :

Neutron spectra of different environments

- Hard spectra \rightarrow **RR** alcove, **R10**
- Soft spectrum → G0 highest flux below 10 MeV
- Ground level \rightarrow **JEDEC** (1 m)
- Avionic → 12 km altitude above Geneva

Spectra normalized to the JEDEC New York City fluence above 10 MeV

Accelerator

SEUs induced by neutrons below 10 MeV on the overall rate

- Neutrons <1 MeV \rightarrow 21% of SEUs in Cypress 65 nm in accelerator
- Negligible contribution below 0.1 MeV

SEU simulations – GEANT4

ISSI 40 nm memory modelled in GEANT4 (G4SEE, see David's presentation) and FLUKA

- Si bulk 250 nm sides cubic RPPs SiO₂ BEOL of 6 um Qc = 0.72 fC
- Model benchmarked against proton (18 200 MeV) and neutron (0.144 17 MeV) experimental data

- Satisfactory agreement considering the broad range of energies and particle species
- Simulations confirm neutrons can deposit enough energy to trigger SEUs even at 0.144 MeV

Energy deposition – Elastic vs inelastic processes

- Energy threshold for (n,a) inelastic interactions in ²⁸Si is 2.75 MeV
- Below this threshold mostly elastic processes take place

Maximum energy transferred by a neutron (144 keV) in elastic reactions:

A A

$$E_{max} = E_n \cdot \frac{4A}{(A+1)^2}$$
²⁸Si $\Longrightarrow E_{max}$ =19 keV $\Longrightarrow Q_{c-max}$ =0.84 fC
¹⁶O $\Longrightarrow E_{max}$ =32 keV $\Longrightarrow Q_{c-max}$ =1.42 fC

Both above memory Qc

More energy transferred to lighter nucleus

 \rightarrow oxygen

02/02/2021

Radiation Hardness Assurance (RHA) implications

Toshiba reference memory used for the HEHeq fluence calculation not anymore the worst-case response

→ Possible SER underestimations

RHA solutions:

- 1. Safety margin to the HEHeq fluence (at least factor 2)
- 2. Implement Cypress 65 nm response for the HEHeq fluence calculation
- 3. Component qualification with 2.5 MeV neutrons and comparison to saturated cross section

6 (HEHeq(Cypress65) HEHeq(Toshiba)				
Spectrum	<10 MeV	<20 MeV	Full		
G0	6.22	3.02	1.95		
RR	6.21	2.50	1.29		

Conclusions

 In the commercial SRAMs studied in this work, neutrons between 0.1-10 MeV can induce up to:

60% of SEUs in accelerator 19% of SEUs in avionics

- RHA (for accelerator) → Neutrons between 0.1 10 MeV yield dominating SEU contribution
- Potential treat for **medical** and **fusion** applications
- Toshiba 400 nm response for HEHeq flux not anymore the worst case
- Elastic processes can deposit enough energy to trigger SEUs even at 144 keV, as proved experimentally and via simulations

This presentation: M. Cecchetto et AI, "0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments" IEEE TNS

Thermal neutrons: M. Cecchetto et Al, "Thermal Neutron Induced SEUs in the LHC Accelerator Environment", IEEE Trans. Nucl. Sci., 2020

Thank you for your attention!

