Experimental Evaluation of External Facilities

Andrea Coronetti (JYU, CERN)

R2E Annual Meeting – 2-3 Feb, 2021 https://indico.cern.ch/event/971222/

Introduction

Facilities for radiation testing at CERN (plus PSI) are supposed to cover most of the needs for accelerator radiation testing.

However, availability is a big constraint. So, external alternatives may be a need over certain time periods.

Electronics is constantly evolving towards more and more integrated solutions and radiation effect sensitivity is also changing.

Several radiation effects are better studied if we can isolate the multi-particle, wideenergy spectra that we have at CERN into separate contributions and verify whether the hypotheses that we assumed to be true for accelerator based on less integrated technologies still hold true when considering state-of-the-art technologies and new materials.

Introduction

- All devices are assumed to have a similar SEE response in the accelerator that comprises:
 - The high-energy hadron step function response
 - The fallout at intermediate energy
 - The thermal neutron cross-section
- The high-energy hadron equivalence approximation typically holds, but it is worth assessing whether it still stands for highly-integrated technologies.

Setups used to characterize beams and effects

Memories

RadMon

• CERN standard (also equipped with RadFET and pin-diode for TID and DD)

ESA Monitor (250 nm)

 Logical-to-physical mapping allows assessing beam homogeneity

SEU assessment for commercial SRAM in lower technology nodes (40-65 nm)

- ISSI 40 nm
- Cypress 65 nm
- RADSAGA 65 nm

SEL assessment for commercial SRAM

Setups used to characterize beams

Destructive events in power devices

- Si
- SiC
- GaN

Silicon diodes

- Experimental energy deposition from the beam (direct and indirect ionization)
- Can be used as a flux monitor as well

TimePix3

• Under development

Ionization chamber

• From RP

Thermal neutron facilities for R2E

- Pure thermal neutrons (flux 10⁹ n/cm²/s)
- No longer available as of 2021

TENIS @ ILL

- Fission spectrum (flux 3x10⁹ n/cm²/s)
- Epithermal and fast neutrons

EMMA @ RAL

- Spallation spectrum (flux 2x10⁶ n/cm²/s)
- Neutron thermalization (thermal and epithermal)

Thermal neutron facilities for R2E

SRAM	D50	TENIS	TENIS B ₄ C	EMMA
RadMon Toshiba 3 V	1.31x10 ⁻¹³	1.19x10 ⁻¹³	1.26x10 ⁻¹⁶	-
RadMon Cypress 90 nm	4.70x10 ⁻¹⁶	5.13x10 ⁻¹⁶	4.26x10 ⁻¹⁸	-
ESA Monitor	3.36x10 ⁻¹⁵	3.01x10 ⁻¹⁵	2.48x10 ⁻¹⁸	-
ISSI 40 nm	3.16x10 ⁻¹⁵	3.53x10 ⁻¹⁵	7.45x10 ⁻¹⁸	2.69x10 ⁻¹⁵
Cypress 65 nm	4.91x10 ⁻¹⁶	6.24x10 ⁻¹⁶	6.39x10 ⁻¹⁸	4.98x10 ⁻¹⁶
RADSAGA 65 nm	4.74x10 ⁻¹⁴	4.56x10 ⁻¹⁴	Low statistics	-
Cypress 90 nm	3.88x10 ⁻¹⁶	-	-	3.33x10 ⁻¹⁶

- Cross-sections from TENIS very similar to D50
- Still events when using B₄C, but cross-section is 100-1000 times lower
 thermal neutron component dominant
- Cross-sections from EMMA also quite compatible and no events with B₄C

Intermediate-energy neutron facilities for R2E

GENEPI2 @ LPSC

- 14 MeV neutrons (flux 5x10⁷ n/cm²/s)
- 2.5 MeV neutrons (lower flux)

FNG @ ENEA

- 14 MeV neutrons (flux 3x10⁸ n/cm²/s)
- 2.5 MeV neutrons (flux 4x10⁶ n/cm²/s)

- 0.144-19 MeV neutrons (flux 4x10⁵ – 10⁸ n/cm²/s)
- More targets/projectiles

Intermediate-energy neutron facilities for R2E

SRAM	LPSC 14 MeV	FNG 14 MeV	PTB 17 MeV	AmBe (Toshiba)	AmBe (actual response)	Chiplr
ESA Monitor	2.49x10 ⁻¹⁴	1.84x10 ⁻¹⁴	-	1.25x10 ⁻¹⁴	2.46x10 ⁻¹⁴	2.10x10 ⁻¹⁴
ISSI 40 nm	-	9.81x10 ⁻¹⁵	1.91x10 ⁻¹⁴	2.88x10 ⁻¹⁴	1.33x10 ⁻¹⁴	1.19x10 ⁻¹⁴
Cypress 65 nm	-	4.60x10 ⁻¹⁴	8.19x10 ⁻¹⁴	1.25x10 ⁻¹³	5.04x10 ⁻¹⁴	1.16x10 ⁻¹³
Cypress 90 nm	6.81x10 ⁻¹⁴	5.06x10 ⁻¹⁴	1.25x10 ⁻¹³	4.63x10 ⁻¹⁴	1.64x10 ⁻¹³	5.73x10 ⁻¹⁴

- Intermediate-energy neutrons can be used as a proxy to high-energy SEU crosssection (SEU only). Data also compatible with Am-Be.
- Intermediate-energy neutrons (0.1-10 MeV) can contribute for about 60% of total SEU rate in accelerator
- Toshiba HEH approximation can provide innacurate results for assessment of AmBe data

Spallation neutrons for R2E

- Spallation neutrons
- Deeply penetrating beam
- Flux calibration

	φ_{HEHeq} [cm ⁻² /s/c	$\varphi_{>10MeV}$	$\varphi_{>20MeV}$	
ESA M.	Toshiba	Cypress	[cm ⁻² /s/o]	[cm ⁻² /s/o]
3.54×10^{6}	3.63 ×10 ⁶	3.46×10 ⁶	3.57×10 ⁶	3.25×10 ⁶

Underestimation only

high-Z materials

for SEL of devices with

Despite being cut at lower energy (700 MeV), the ChipIr spectrum provides very representative error rates for several CERN environments

 $\begin{array}{l} \text{SEU}\ (\%) \text{ in the } 1-100 \text{ MeV Energy Interval in Different} \\ \text{Environments, From the Softer to the Harder.} \\ \text{Considered Spectrum} > 1 \text{ MeV} \end{array}$

1-100 MeV	Spect %	ESA M.	Toshiba	Cypress	FPGA
UJ	79.1	69.8	68.9	67.9	71.9
G0	95.3	82.1	79.6	77.6	86.6
ChipIr	61.4	56.1	57.1	55.0	58.6
JEDEC	59.8	60.4	59.0	57.5	63.5
RR	75.7	54.5	52.1	50.1	59.3
R10	75.0	48.8	46.3	44.1	54.7

Pion facility for R2E

R2E

RADSAGA

02/02/2021

No drastic consequences for HEH approximation, though!

11

Proton facilities for R2E (other than PSI)

- Low-energy protons (0.5-5 MeV)
- Flux 10²-10¹² p/cm²/s
- Vacuum

- Several energy ranges (0.5-52 MeV)
- Flux 10⁴-10⁸ p/cm²/s
- Vacuum or air

KVI-CART

- 10-186 MeV protons (PSI equivalent)
- Flux 10³-10⁹ p/cm²/s
- Beam wider than PSI

Proton facilities for R2E (other than PSI)

- Low-energy proton SEU cross-sections comparable to heavy ion SEU cross-sections
- LEP introduces another uncertainty that can vary by orders of magnitude from one device to another and may lead to underestimate the expected rate.

Heavy ion facilities for R2E

- 20-50 MeV/n
- LET 20-100 MeV/(mg/cm²)

R2E

RADSAGA

- Flux 10¹-10⁴ i/cm²/s
- Air only

- 16.3 MeV/n
- LET 1.5-48 MeV/(mg/cm²)
- Flux 10¹-10⁴ i/cm²/s
- Vacuum or air

KVI-CART

- 30-90 MeV/n
- LET 0.02-45 MeV/(mg/cm²)
- Flux 10²-10⁷ i/cm²/s
- Air only

Heavy ion facilities for R2E

lons provide fundamental information for device response in hadron fields -> indirect ionization is produced by secondary ions

Used for modelling of device response (sensitive volume simulations to FLUKA, TCAD, etc.)

Used for calibrating beam instrumentation (e.g., diodes)

K. Niskanen et al., DOI 10.1109/TNS.2020.2983599

Practical information

From within the CERN network you can access our Wiki page on facilities:

It contains plenty of information that we collected from our previous tests:

- Beam characteristics
- Dosimetry
- Electrical infrastructure (cables, patch panels)
- Mechanical infrastructure

That may help preparing future test campaigns

RADNEXT (https://radnext-network.web.cern.ch/)

Thank you for your attention!

ζ(STI^γ

•

RADSAGA

R2E