Update on FPGA Testing

Rudy Ferraro (BE-CEM-EPR), Antonio Scialdone (BE-CEM-EPR / Politecnico di Torino) R2E Annual Meeting – 2-3 Feb, 2021

R₂E

Controls Electronics & Mechatronics

Motivations

- > A large number of electronic systems are exposed to the LHC radiation environments where they can be exposed to high level of doses and fluences
- > The digital part of those systems is usually controlled by either microcontrollers, processors and FPGAs
- \rightarrow FPGAs are usually preferred as they allow:
 - High Speed of operation
 - High Capacity for logic designs
 - Numerous I/Os compatible with different protocols (SERDES, LVDS, etc..)
 - Re-programmability

Controls Electronics &

- > FPGAs are ones of the most complex component to be tested under radiation
- > FPGA qualifications for CERN application might require several years of work

@ Courtesy of the TE/MPE Group

Past Achievements

BE-CEM-ERP Qualification Timeline:

Controls Electronics &

FPGAs Under study

- > NG-MEDIUM (NX1H25S) from NanoXplore:
 - SRAM-Based FPGA:
 - STM C65 (65nm RadHard ST process)
 - Configuration Memory Integrity Check (CMIC) engine
 - Configuration Memory sensitive to SEU
 - Usually Higher TID lifetime than Flash-based

Controls

Electronics &

Mechatronics

NG-MEDIUM-EVAL-KIT

- PolarFire (MPF300TS) from Microsemi:
 - 28nm SONOS technology
 - Flash-Based FPGA:
 - Low Configuration Memory sensitivity to SEU
 - Usually lower TID lifetime than SRAM-based

Standard Test Structures

Benchmark Test Structure

- Benchmark circuit employed is from the ITC'99 suite [1&2] in collaboration with Politecnico di Torino
- It provides fully synthesizable circuits that can be used as reference circuits to evaluate and compare FPGA sensitivities
- We used the B13 circuit, which is the most used one in the suite
- The B13 is a pure FSM circuit that is composed of: 339 gates, 53 FF and its input/output interface has 10 bits
- The output of each circuit is compared with a golden circuit running on the Zynq board of the comparators are sent to the Zynq through FMC.
- Circuit input signals are fed by a linear feedback shift register (LFSR) generating random signals
- In case of error the Zynq reset all the structures

Qualification Timeline

Controls

Electronics &

Mechatronics

02/02/2021

FPGA FE sensitivities comparison

NGMedium: NanoFIP Application Test

Test of the NanoFIP design implementing the WorldFIP communication bus widely used at CERN for slow instrumentation control. This test was performed by the BE-CEM-EDL section.

→ After discussion with NanoXplore it has been pointed out that some automatic reset schemes could have impacted the failure rate: by default a single error detected on the SpaceWire bus or a double error detected by the CMIC will lead the FPGA to reset itself, loosing the configuration

Controls Electronics &

NGMedium: Reset Masks Results

Controls Electronics & 02/02/2021 Mechatronics

(en

CÉRN

R2E

NGMedium Vs PolarFire: Testbench response

02/02/2021

Controls

Electronics &

Mechatronics

6

R2E

> Same failure rate but different causes:

PolarFire: Proton vs Thermal neutrons

➢Preliminary results:

>Without logic the thermal neutron cross-sections are quite close to the proton ones for FF and DSPs

>The SET capture probability seems lower with thermal neutrons

≻High SEFIs cross-section with thermal neutrons

>Thermal neutrons should be considered for the SEE prediction in operation even for low R-Factors

➢More test planned in May 2020 (SRAM (w/wt ECC), B13 (w/wt TMR), DSP chains)

Controls Electronics &

References & Resources

- > ITC99' Benchmark Suite
 - 1. Official Homepage: https://www.cerc.utexas.edu/itc99-benchmarks/bench.html
 - 2. Gitlab: https://github.com/squillero/itc99-poli
- NG-Medium Radiation Test reports:
 - 3. Functional Element Radiation report [EDMS: 2227145], G. Tsiligiannis, link: https://edms.cern.ch/ui/file/2227145/1/NanoXploreRadReport_docx_cpdf.pdf
 - 4. NanoFIP Radiation report [EDMS: 2221380], E. Gousiou, link: https://edms.cern.ch/ui/file/2221380/1/PSI_Radiation_Test_Report_nX_20190705_docx_cpdf.pdf
 - 5. IT99' Benchmark Radiation report [EDMS: 2261505], A. Scialdone, R. Ferraro, link: https://edms.cern.ch/ui/file/2261505/1/PSI_Test_Reports-NanoXplore_v3_docx_cpdf.pdf
 - 6. IT99' Benchmark Radiation report [EDMS: 2319932], A. Scialdone, R. Ferraro, link: https://edms.cern.ch/ui/file/2319932/1/PSI_Test_Reports_November-NanoXplore.pdf
- PolarFire Test reports:

Controls

- 7. **PSI Radiation report** [EDMS: 2475661], R. Ferraro A. Scialdone, link: https://edms.cern.ch/ui/#!master/navigator/document?P:1382953417:100764438:subDocs
- 8. ILL Radiation report Will be published soon.
- Publications:

(en

- 9. SmartFusion: « Investigation on the sensitivity of a 65nm Flash-based FPGA for CERN applications », G. Tsiligiannis et al, RADECS 2016, link
- 7. NGMedium: « Reliability analysis of a 65nm Radiation- Hardened SRAM-Based FPGA for CERN applications », G. Tsiligiannis et al, RADECS 2019
- 8. Benchmark NGMedium & PolarFire Qualification: Will be submitted this year

Conclusions

> Qualification of FPGA is a complex and long process but necessary and worth it

- > Current project developments are profiting from past qualifications (SmartFution 2 and Igloo 2)
- New FPGA landscape bringing new performances possibilities pushed for new FPGA qualifications
- NG-Medium deeply qualified showed to be of a great interest in terms of TID lifetime and single elements response but actual design implementation and CMIC working operation are limiting the use
- Preliminary results of the PolarFire showed also great results, the huge gain of lifetime and the reduced functional element sensitivity will give new system design possibility
- > Thermal neutron sensitivity non-negligible, to be fully assessed
- > The PolarFire is still under qualification more tests are planned to complete it

Controls

Thank you for your attention!

Controls **Electronics &** Mechatronics

Improved Test Setup

- FPGA Test setup improved by using a second FPGA (Zynq MicroZed) as tester instead of Built-In Self Tests (BISTs)
 - → Prevents interpreting tester errors as test structure errors
 - → Allows more complex error processing to be performed in the Tester
 - → Use of 50 cm FMC cable between tester and DUT allows protecting the tester from radiation and to reach high frequency test (up to 220 MHz tested)

Controls Electronics &

NG-Medium: Functional Elements Test Structures

> CRAM: 6 Mbits, tested in static, CMIC disabled during test

- PLL: Input: 25 MHz, Output: 12.5 MHz, 4 PLLs
- > BRAM: No ECC (49 kbits per block), Slow & Fast ECC (32 kbits per block)
- > Flip Flops (FFs): 8 chains of 3072 FFs for each configuration
- DSPs: 18-bit multiplication

NG-Medium: B13 Test Structure

- Benchmark circuit employed is from the ITC'99 suite developed by Politecnico di Torino
- It provides fully synthesizable circuits that can be use as reference circuits to evaluate and compare FPGA sensitivities
- > We used the B13 circuit, which is the most used one in the suite
- The B13 is a pure FSM and is composed of: 339 gates, 53 FF and its input/output interface has 10 bits
- These circuits are compared two by two and the output of the comparators are sent to the Zynq through FMC.
- In case of error the Zynq reset all the structures
- Circuits are fed by a linear feedback shift register (LFSR) generating random inputs
- In addition B13 output bit-to-bit comparators and a global and gate between all the circuit-to-circuit comparators are implemented to gather more information

Controls

Electronics & Mechatronics

NG-Medium: Expected failure rate in operation

- Considering the B13 circuit, which is a rather small design compared to typical LHC ones, the annual failure rate in operation would be the following for the High-Luminosity LHC conditions:
 - Tunnel (IR1 Q1-Triplet): HEH Fluence: ~1.10¹³ HEH.cm⁻²/year, TID: ~ 2 kGy/year
 - <u>Single</u> B13 circuit CMIC reset: ~ 0.4 /year
 - Single B13 circuit unknow reset: ~ 10 /year
 - **Single** B13 temporary failures: ~ 1.41 /year
 - Tunnel (9R5 DS area): HEH Fluence: ~3.10¹² HEH.cm⁻²/year, TID: ~ 100 Gy/year
 - Single B13 circuit CMIC reset: ~ 0.07 /year
 - **Single** B13 circuit unknow reset: ~ 3 /year
 - Single B13 temporary failures: ~ 0.42 /year

Number of systems $N_{SEE_Failure} = N * \sigma * fluence$ $N * \sigma * fluence$ Example in LHC-DS: 18 cells = 18 units > 54 resets/year

Controls

Electronics & Mechatronics

NG-Medium: B13 TMR routing example

> Example of common long input routing for a triplicated circuit:

