

Thurel Yves

With inputs from J. Clar, B. Favre, J. Milovanovitch CERN, for R2E Annual Meeting - 2021-02-03 @ CERN

Design of a 500 Gy Rad-Tol Converter

Design challenges of R2E-HL-LHC(60;120)A

R2E Annual Meeting

Document source Meeting link (indico) https://edms.cern.ch/document/2475659/ https://indico.cern.ch/event/971222

sv-epc-lp

This talk intends to

- Describe the design of a up to 500 Gy power converter in the context of the current 60/120A re-design of converters
- Give some hints of our learnt lessons from previous design
- Describe some important design paths in the coming process

Previous R2E-Converters: installed in LHC @ LS2

03/02/2021

CERN

Context

From Radiation levels to Converter Project Data, optimizing Design Effort

Context – Radiation Levels in LHC

Insert Foot 6

sv-epc-lp

03/02/202

Radiation levels (HL)

- 600A / kA already renewed
- 60A / 120A highly exposed
 - In the range of [120; 300] Gy
 - 72 units in the tunnel (60A)
 - 92 units in RR1/5 (120A)

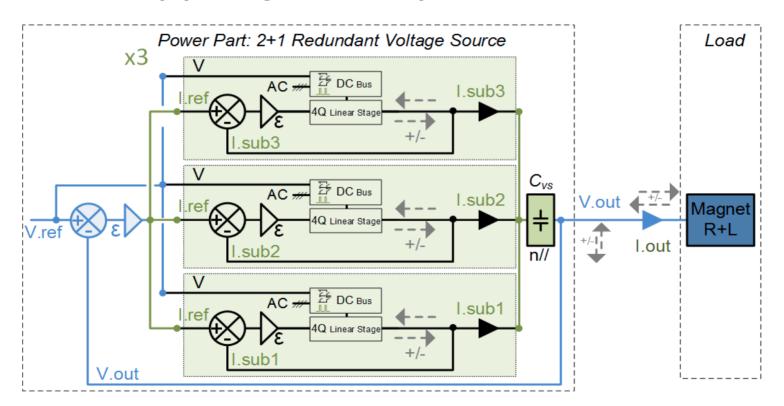
Design Target

- 60A / 120A
 - Set in [400; 500] Gy range (ELDRS + margin.)

Area	Dose [Gy/year]	1MeV n-eq. [nb/(cm ² .year)]	E>20MeV HE [/(cm ² .year)]		
Tunnel R2E-HL-LHC60A-10V 72 units (072 (cell[12;16] Pt1,2,5)	08x 12L/R2; <10 08x 12L(1/5): <10 08x 12R(1/5): <03 48x 14/16-L/R 1/2/5: 1.5	<1E11 3E10	<1E10 3E9		
Tunnel LHC60A-08V (678 - 72) units R2E-HL-LHC60A-10V 72 units (550x Cell>17) (120x cell[12;17] Pt3,4,6,7,8)	0.5	3E10	3E9		
RR13/17 R2E-HL-LHC120A-10V 36 units R2E-LHC600A-10V 28 units R2E-LHC6kA-08V 26 units R2E-LHC6kA-08V 04 units * installed with 5kA DCCT	level 0: 15 level 1: 25	level-0: 7E10 level-1: 7E10	level-0: 1.0E10 level-1: 1.4E10		
RR53/57 R2E-HL-LHC120A-10V 36 units R2E-LHC600A-10V 28 units R2E-LHC6kA-08V 26 units R2E-LHC6kA-08V 04 units * installed with 5kA DCCT	level 0: 15 level 1: 25	level-0: 7E10 level-1: 7E10	level-0: 1.0E10 level-1: 1.4E10		
RR73/77 R2E-LHC600A-10V 48 units R2E-HL-LHC120A-10V 20 units R2E-HL-LHC600A-10V 02 units	0.5	4E9	2E8		
UL14/16 R2E-HL-LHC120A-10V 16 units R2E-LHC600A-10V 02 units	$\begin{array}{l} \textbf{0.01} \mbox{ close to } US15/17 \\ \textbf{0.10} \mbox{ in } UL14/16_{middle} \\ \textbf{1.00} \mbox{ close to } UJ14/16 \end{array}$	$\begin{array}{l} \textbf{2E8} \mbox{ close to US15/17} \\ \textbf{1E9} \mbox{ in UL14/16}_{middle} \\ \textbf{1E10} \mbox{ close to UJ14/16} \\ \end{array}$	2E7 close to US15/17 1E8 in UL14/16 _{middle} 1E9 close to UJ14/16		
UA/J(s), TZ76, UJ33, UR15/57 Some local exception in Point 6 "sea level" expected (Th. n. excepted)	0.01	[5E6; 2.5E7]	[1; 5]E6		

Converter redundancy

- Generalization of redundancy concept to new (<120A) R2E versions.
 - HL-LHC availability target (radiation or not induced impact on operation)
 - New R2E-HL-LHC60A & R2E-HL-LHC120A will be redundant


Optimization of Design effort

- 060A converters = 2 x 60A in // (n+1 = 1+1) = 2.0 x installed power
- 120A converters = 3 x 60A in // (n+1 = 2+1) = 1.5 x installed power
- Designing 60A & 120A converters:
 - One 60A Power Source only to design which can operate in // for redundancy

Converter Control Loops

Inner Current Loop (sharing current load)

sy-epc-lpc

03/02/202

Project Owner & Involved People

 Project owner(s): Thurel Yves | project leader Benoit Favre | pwr elec. designer
 Jeremie Clar | radiation expert | fellow | 2020-09
 Jeanne Milovanovitch | pwr elec. Designer | fellow | 2020-09 CERN

Yves Thurel

9

Project Main Purpose

- Provide & manage the delivery of highly reliable & radiation tolerant redundant
 - 60A & 120A converters for LHC (R2E) & HL-LHC (new units), for LS3.

Project Main Deliveries

- 144 R2E-HL-LHC60A-10V
- 128 R2E-HL-LHC120A-10V

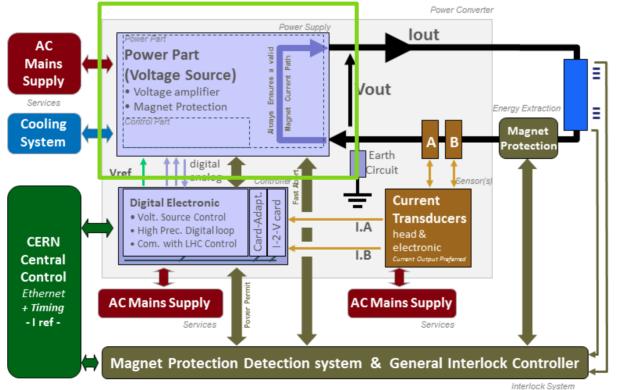
CERN

Lessons learnt from previous designs / projects

With new challenges put in perspective

Context

 A power source can be designed with standard elementary components, not requiring high complexity integrated devices (devoted to FGC in R2E-EPC).


sv-epc-lpc

03/02/2021

Yves Thurel

11

CERN

Radiation Event Mitigation / Risks

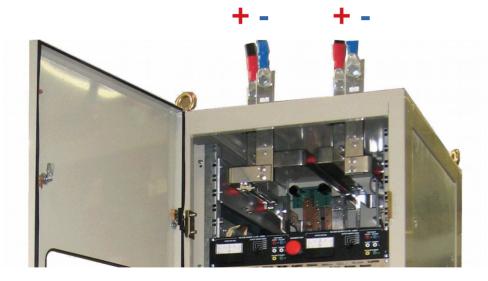
- Single events can be very well managed with gold simple rules
- Dose degradation (TID, DD) must be considered very seriously above 50 Gy
- Component Testing effort versus radiation
 - Should be focusing on critical components (more than verifying known expected behaviour)

sv-epc-lp

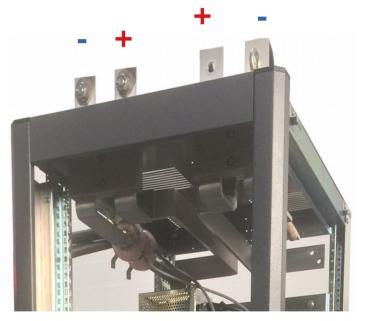
Yves Thurel 12

CERN

- Single source (PWM), integrated ones (current sensors), very sensitive (optocoupleur)
- Whole Converter Testing effort versus radiation
 - Is a key point, and address some failures mechanism difficult to control / predict
 - Gives an opportunity to test many components in one go, in their specific use conditions!
 - Reinforces the trust in design, before installation.


Management of COTS component purchasing process highlight

- All semi-conductors purchased by CERN to be sent to external producing companies... was a tough taks, certainly not justified for most of them.
- Sensitive COTS must be carefully treated, others addressed in std way.



LS2 R2E new Converters were ... "almost" like old ones

"almost" already created over-cost + headaches during LS2!

Old design +/- busbars

Yves Thurel

14

CERN

sv-epc-lp

03/02/202

Busbars Polarity updated!

Lessons learnt from recent R2E project - Integration

New R2E60/120A converters integration needs even more care attention

• 60A converters are now (1+1) 60A converter

Need to install **twice** initial power is **not almost the same** CERN

sv-epc-l

03/02/20

Yves Thurel

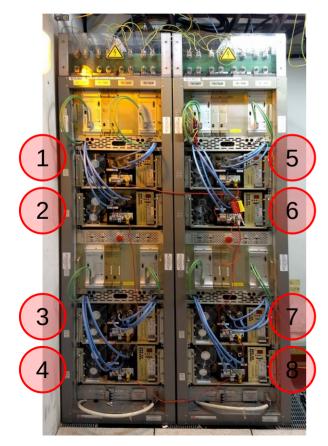
15

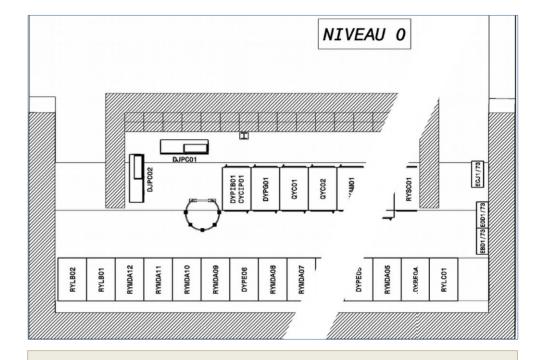
New R2E60/120A converters integration needs even more care attention

120A converters comes with 3 converters a rack versus 4 in initial old design.

From 4x converters to 3x converters in installed rack *is* **not almost the same** CERN

sv-epc-lpc


03/02/2021


Yves Thurel

16

New R2E60/120A converters integration needs care attention

120A converters comes with 3 converters a rack versus 4 in initial old design.

sv-epc-lr

03/02/202

Yves Thurel

17

CERN

Impacting current RR rack layout

CERN

Design

Highlighting paths for success

A fine selection of all required components is under process

SE Class	TID Class	Туре	Reference Datasheet	Manuf.	Case	EDMS	Select List	R2E Lib	R2E _{Rep} t	LTSp. Model
1	1	• Power IGBT	ver IGBT IKW15N120BH6, SCT3160KL, Infineon TO247				P		/	
1	0	• Pwr SiC MOSFET	IMW120R140M1H, SCT3160KLGC11	Infineon / Rohm	TO247			P		
1	0	• High Pwr MOSFET Linear-use-considered	NA	NA	SOT227			P		
1	1	• Med. Pwr MOSFET	IPD600N25N3-G	Infineon	DPack			P		
1	1	• Low Pwr MOSFET	BSS127, SQ2398ES, FDN86246, ZXMN10A07F	ON, Vishay, Diodes-Inc	SOT23			P		/
						1				
0	0	• PNP Transistor	BCP53-16	Philips	SOT223	Σ		P		
0	0	• NPN Transistor	BCP56-16	Philips	SOT223			P		<u>/</u>
0	0	• PNP Transistor	FMMT591	Diodes Inc.	SOT23			P		
0	0	• NPN Transistor	FMMT491TA	Diodes Inc.	SOT23			P		
										1
0	0	Bridge Rectifier	26MT160	Vishay	D-34A			P		<u>/</u>

Components process

- Sorting candidates
 - Electrical data
 - R2E-reports (if exits)
- Simulation model
 - Standard (0-Gy)
 - R2E (500-Gy)
- Easy access (web)
 - Data summarised for designers / check
 - Sharing our choice for discussion

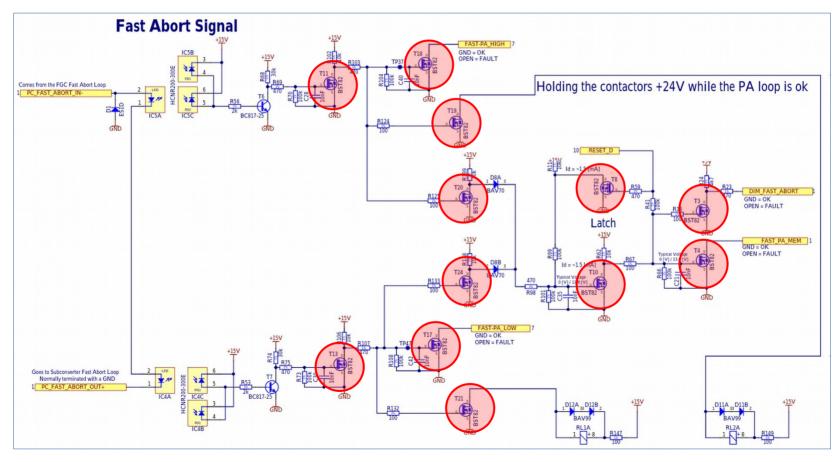
A fine selection of all required components is under process

2	0	• Current Sensors	NA	NA	NA	×	P		2
2	1	• Phase Sh. PWM	NA	NA	NA	Σ	P	N	
0	0	• Op. Amplifiers	OPA2134UAG4-TBC, TL052ACD	ті	SO8		P		
0	0	• Comparators	LM339D	ті	S08	J.M.	P		
0	0	• Volt. Reference	NA	NA	NA	2	d		
0	0	Signal Diodes	BAV70, BAV99, BAW56	Philips	SOT23		P		
0	0	• Zener Diodes	BZV55	Philips	SOD80C		P		2
0	0	• Med.Pwr Diodes	ES1DHE3_A/H	Vishay	DPack, DO-214AC		P		2
0	0	• Power Diodes	DSS2x111-008A, DSS2x101-015A, MBR2X100A100, DSA240X150NA	Ixys, GeneSiC	SOT227	1 ⁴⁴ 1	P	July I	
0	0	• TVS & Varistors	NA	NA	NA	×	P		
				1					
0	1	Opto-Isolators	NA	NA	NA	>	P	>	

Focusing on

- Current sensor
 - Opening the Black-Box with producer company
 - Already done on former R2E projects.
- PWM
 - Converter "Heart"
 - Not many choices (phase shifted techno)

Capitalizing on Known Components


Component Manufacturer If Any	Family Reference If Any	Туре	V [Volt]	lc [A]	lc peak max [A]	Operating Junction Max T°C [°C]	P [W]	Hfe @ lc = 150mA	Case	Code	Status	Rating 1=keep 3=drop	Reason for choosing the component or comment	Reason for choosing the component or comment			tion Testing		
		-	-	-		-	-			•	-	-			-	-	-	-	
ON Semiconductor	BCP53-16T1G	PNP	80	1	1.5	150	1.3	100	SOT-223	863-BCP53-16T1G	Active	1	Already used in previous design, already tested, good behaviour under radiation.	TRAD Ch	narm				
ON Semiconductor	BCP56T1G	NPN	80	1	1.5	150	1.3	250	SOT-223	863-BCP56T1G	Active	1	NPN equivalent of BCP53. Already used in R2E design.	PSI					
Nexperia	BC817-25	NPN	45	0.5	1	150	0.35	100	SOT-23	771-BC817-25-T/R	Active	3	Do not use, perfer FMMT491TA instead.	1	2	3	4	5	
Diodes inc	FMMT491TA	NPN	60	1	2	150	0.5	100	SOT-23	522-FMMT491TA	Active	1	Use this component over BC817. Plus it can withstand over 400Gy.	1	2	radwg			
Diodes inc	FMMT591TA	PNP	60	1	2	150	0.5	100	SOT-23	522-FMMT591TA	Active	1	PNP equivalent of the component above.	1	2				

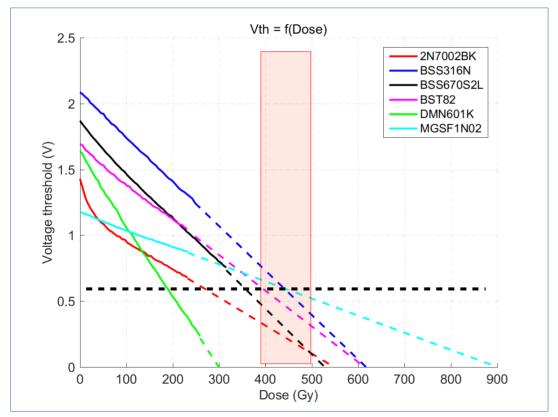
But also focusing on new ones (SiC)

Component Manufacturer	Family Reference	Technology	Topology	Vdss [V]	Min Vgs Threshold [V]	Typ Vgs Threshold [V]	Max Vgs Threshold [V]	Max Pulsed Drain Current	Case	Status	Rating 1=keep	p Comments	Radiation Testing	Theoretical TID effects on (up to 500 Gy)			Single Event		Displacement damage
If Any	lfAny ▼			•			·····conou [0]	[A]			3=drop			Vgs Threshold	Turn-On Delay	Fall time	Cross section @ Vdss max [p.cm- 2]		
Infineon	IMW120R140M1H	SiC	Trench	1200	3.5	4.5	5.7	32	TO-247	Active and preferred	1	Best electrical characteristics regarding this particular application (IGBT replacement)	#N/A						
ST Microelectronics	SCT10N120	SiC	Planar	1200	1.8	3.5	3.5	24	HiP247	Active	2		#N/A						
ST Microelectronics	SCT20N120	SiC	Planar	1200	2	3.5	3.5	45	HiP247	Active	3		#N/A						
ON Semiconductor	NTHL 160N 120S C1	SiC	Trench	1200	1.8	3.1	4.3	69	TO-247	Active	3		#N/A						
ON Semiconductor	NVHL160N120SC1	SiC	Trench	1200	1.8	3.1	4.3	69	TO-247	Active	3		#N/A						
ROHM	SCT3160KLGC11	SiC	Trench	1200	2.7	#N/A	5.6	42	TO-247	Recommended	1	3 rd gen ROHM recommended by Corinna Martinella because of double trench design and similar electrical characteristics as the other selected SIC MOSFET	#N/A						
ROHM	SCT3080KLHR	SIC	Trench	1200	2.7	#N/A	5.6	77	TO-247	Recommended	2		#N/A						
ROHM	SCT3105KLHR	SIC	Trench	1200	2.7	#N/A	5.6	60	TO-247	Recommended	2		#N/A						

sy-ep. 03/02/20.

Case of Very High Occurrence in the design = Low Power Mosfet

Path-1: Cpt Selection – Highlight on known critical ones Yves Thure 23

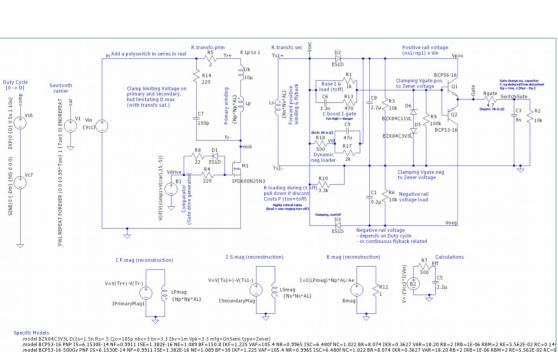

100 Million

sy-e

03/02/20

Case of Very High Occurrence in the design = Low Power Mosfet

VGS threshold starts to be critical above 400 Gy | Robust candidate needed.



Any Converter Sub-System / Sub-Part is described in detail in web pages

- Any converter part is treated
- Doc = SpreadSheet + Report +
 LTSPice Model + Presentation
 - Design traceability for future debug
 - Understanding Issues from field
 - Easier Possible Internal Reviews
 - With Electronics Expert

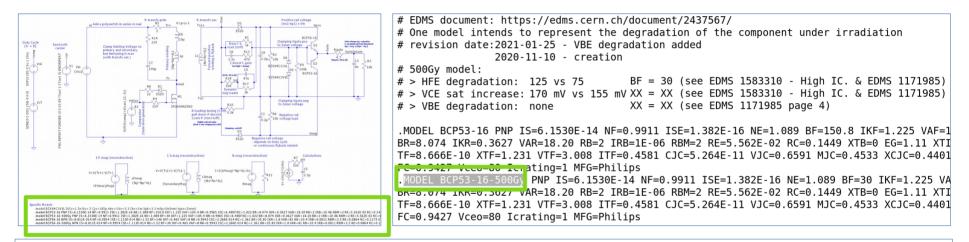
Model/Unit description	Schema overview	EDMS	Link Design	Link Design	Link Pres.	LTSp. Model
High Frequency DC-DC.			0			LTspice'
IGBT/MOS Phase Shifted Driver.						Uspice'
Inverter High Freq. Current (I) Meas.	$\begin{vmatrix} a_{1} & a_{2} \\ a_{1} & a_$	2				Uspice'
	aborto,					17
Input Power Filter	$\begin{array}{c} -b = a_{1}b_{1}\\ a_{2}b_{1} = \frac{b_{1}}{p} \\ -b = \frac{b_{1}}{p} \\ = b \\ = \frac{b_{1}}{p} \end{array} \qquad $					Utspice'
		_				ITenice'
Pwr Mod. Aux Power Supplies						UTspice'
Ctrl & Prot. Aux Power Supplies						Uspice'
Shared Sources Control	to and the second secon					
Power Mosfet Linear Driver	A A A A A A A A A A A A A A A A A A A					Uspice'
Current Source (Mosfet-based)						Uspice'
						1
Earth Leakage Detection System						Uspice'
Current Leads Monitoring System						Uspice'

model BCP56-16 NPN IS=8.811E-014 NF=0.9954 ISE=1.113E-014 NE=1.52 BF=146 IKF=0.465 VAF=8 NR=0.9943 ISC=2.266E-014 NC=1.361 BR=35.83 IKR=1.8 VAR=81 RB=10.4 IRB=0.0011 RBM=2.5 RE=0.0864 RC=0.1173 X model BCP56-16-500Gy NPN IS=8.811E-014 NF=0.9954 ISE=1.113E-014 NE=1.52 BF=30 IKF=0.465 VAF=8 NR=0.9943 ISC=2.266E-014 NC=1.361 BR=35.83 IKR=1.8 VAR=81 RB=10.4 IRB=0.0011 RBM=2.5 RE=0.0864 RC=0.1

Goal: Very Accurate Simulation

 Systems & components are simulated up to a quasi-perfect match vs real board.

Path-2: Simulating Radiation Effects

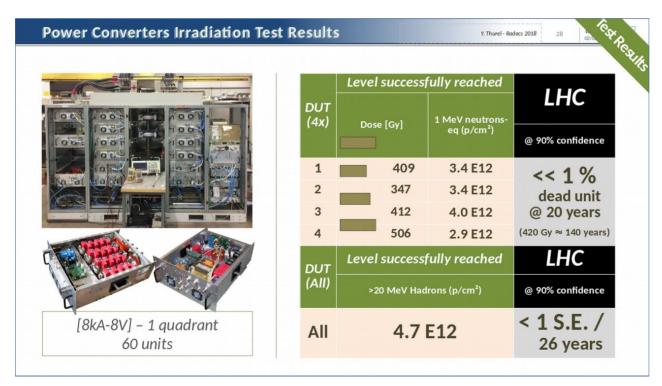

Paris

03/02/2

Goal: Very Flexible Simulation – Radiation Effect Included!

From component fine analyse, a 500 Gy model is injected in simulations

Specific Models


.model BZX84C3V3L D(Is=1.5n Rs=.5 Cjo=185p nbv=3 bv=3.3 Ibv=1m Vpk=3.3 mfg=OnSemi type=Zener) .model BCP53-16 PNP IS=6.1530E-14 NF=0.9911 ISE=1.382E-16 NE=1.089 BF=150.8 IKF=1.225 model BCP53-16-500Gy PNP IS=6.1530E-14 NF=0.9911 ISE=1.382E-16 NE=1.089 BF=30 IKF=1.225 VA .model BCP56-16 NPN IS=8.811E-014 NF=0.9954 ISE=1.113E-014 NE=1.52 BF=146 IKF=0.465 model BCP56-16-500Gy NPN IS=8.811E-014 NF=0.9954 ISE=1.113E-014 NE=1.52 BF=30 IKF=0.465 V

Nothing beats a full system passing a CHARM test!

Project already includes up to 10 units for radiation test @ CHARM

Keeping only One project milestone? "When Converter is validated vs radiation in CHARM"

sy-epc-lpc

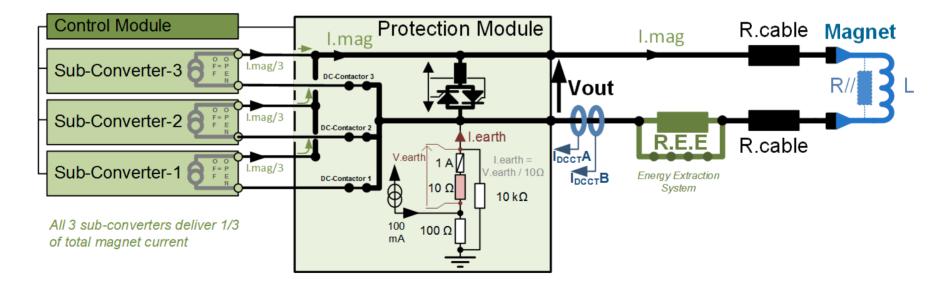
CERN

Conclusion

Yves Thurel 30

sv-epc-lp

Success in R2E design is & stays based on


- Understanding where / what are the threads
 - Relying on reliable projections of radiation levels in the machine
- Gold design rules
 - Experience and knowledge at CERN is now very high. Rely on / Share it!
- Well defined robust & rigid (design & qualification) process
 - Clear & strong steps are required for a smooth path to success
- Focusing on / Choosing / Qualifying the right components
 - Co60, CHARM, PSI availability is a key point
- Testing final systems
 - Nothing beats a full system having pass CHARM test!

www.cern.ch

Power Modules Arrangement

- Power Modules operating in //
- Still, control & protection module not redundancy
 - Limited to minimum function, requiring high reliable & safe design

sv-epc-lpc

03/02/202

sy-epc-lpc

03/02/2021

Project Deliveries

Reference Unit	Qty ^a	Date	Circuit Use / Name
R2E-HL-LHC60A-10V Op. Pwr Conv. incl. rack	144 ⁸	LS3	Tunnel _{R2E + rotation} 144:72 units _{cell12/14/16 Pt1/5/2} +72 units _{rot.} - FGClite
R2E-HL-LHC60A-10V Op. Pwr Conv. incl. rack	004	LS3	UR15/UR17 004 : 2x [02 u _{HL/Q1a}] I. _{crowbar} :4.1kA FGC3
R2E-HL-LHC120A-10V Op. Pwr Conv. incl. rack	124	LS3	RR13/RR17 036 :2x [18 units] -FGClite RR53/RR57 036 :2x [18 units] -FGClite RR73/RR77 020 :2x [10 units] -FGClite UL14/UL16 016 :2x [08 units] -FGClite USC55/UL557 016 :2x [08 units] -FGClite