

Overview of MPE-Machine Interlock systems affected by radiation

Raffaello Secondo

on behalf of TE-MPE-MI

3rd February 2021

- Warm Magnet Interlock Controller: WIC
- Power Interlock Controller: PIC
- Beam Interlock System (BIS) User Interface (CIBU)
- Conclusions

Outline

Warm Magnet Interlock Controller: WIC

- Power Interlock Controller: PIC
- Beam Interlock System (BIS) User Interface (CIBU)
- Conclusions

WHAT IS THE WIC ?

- GENERIC PLC BASED SOLUTION
- ORIGINALLY DESIGNED FOR THE **PROTECTION OF RESISTIVE MAGNETS**
- COLLECTS INPUTS FROM THE FIELD (Thermo and Flow Switches) AND PROVIDES Power Converter AND BEAM PERMITS

WIC SYSTEMS UNDER RADIATION

- **Present Radiation Levels**: 1 Gy/year
- HL-LHC TID: ~2 Gy/year
- The 5 WIC systems for the SPS-LHC transfer lines were installed in 2003 → 22 years in LS3

TI2

WIC strategy towards a rad-tol solution

SIEMENS

S7 1500

- Standard WIC solution based on **PLCs**
- Use industrial fieldbus
- **Compatible** with **supervision** application
- Generic solution for all WIC systems
- Unknown behavior under radiation

- Radiation tolerant up to 500 Gy
- Not yet compatible with PLCs
- Not WIC standard
- Not compatible WinCC_OA
- WorldFIP fieldbus to be implemented

I/O CRATE Under Test

LHC SCHEDULE

R2E Annual Meeting – 3rd February 2021

- Warm Magnet Interlock Controller: WIC
- Power Interlock Controller: PIC
- Beam Interlock System (BIS) User Interface (CIBU)
- Conclusions

Power Interlock Controller (PIC) - I

- Implemented only in LHC. Represents 20% of the user inputs to BIS.
- Ensures correct powering conditions for the LHC superconducting magnet circuits
- Interfaces with Quench Protection (QPS) and Power Converters and technical infrastructure and safety systems (Cryogenics, UPS, AUG, Access and Controls)
- Distributed system: 36 independent PICs installed, composed of:
 - One Siemens S7-300 family PLC with redundant power supplies
 - One I/O Remote interface with Anybus[©] and CPLD embedded (CIPA)
 - Several tailor made electronic boards depending on the configuration (CIPS, CIPI, CIPPx).
- **10 out of 36 PICs are located in the RRs** (CIPA only).
- RRs expected radiation levels (HL-LHC Radiation Level Specification):
 - **TID** = ~280 Gy
 - HEH fluence = ~ 1.4x10¹⁰ cm⁻² max. annual
 - IMeVn-eq fluence = ~8 x10¹¹ cm⁻²

Power Interlock Controller (PIC) - II

Power Interlock Controller v2 - DRAFT

R2E Annual Meeting – 3rd February 2021

- Warm Magnet Interlock Controller: WIC
- Power Interlock Controller: PIC
- Beam Interlock System (BIS) User Interface (CIBU)
- Conclusions

Beam Interlock System (BIS) User Interface (CIBU)

- LHC : ~ 150 CIBUs total
- **12 CIBU** units in **RR**, Points 1/5/7
- CIBU system is critical to deliver the Beam Permit signal to the LHC Beam Dump

Current Target Radiation Levels

HL-LHC Radiation Level Specification:

https://edms.cern.ch/document/LHC-N-ES-0001/1.0

	Annual (360 fb^{-1}) HL-LHC radiation levels			
	TID [Gy]	HEH [cm^{-2}]	Th. neut. $[cm^{-2}]$	1MeVn-eq $[cm^{-2}]$
RR13-17-53-57 LO	15	$1\cdot 10^{10}~\mathrm{cm}^{-2}$	$9\cdot10^{10}~\mathrm{cm}^{-2}$	$7\cdot 10^{10}\mathrm{cm}^{-2}$
RR13-17-53-57 L1	25	$1.4\cdot 10^{10}~{\rm cm}^{-2}$	$1.2\cdot 10^{11}{\rm cm}^{-2}$	$7\cdot 10^{10}~\mathrm{cm}^{-2}$
UJ14-UJ16 LO	6	$3\cdot 10^9~\mathrm{cm}^{-2}$	$3\cdot 10^{11}\mathrm{cm}^{-2}$	$5\cdot10^{10}\mathrm{cm}^{-2}$

Hi-Lumi, RR (L1) ultimate scenario: 4000 fb⁻¹ TID = 280 Gy HEH fluence = $^{1.6}$ x10¹¹ cm⁻² total, $^{1.4x10^{10}}$ cm⁻² max. annual 1MeVn-eq fluence = 8 x10¹¹ cm⁻²

TE

R2E Annual Meeting – 3rd February 2021

Radiation Tests Results -I

Tests carried out at PSI by BE-CEM-EPR

RS485 driver MAX3430

- **Report**: EDMS #2417502
- No errors on RX side.
- Reached TID 500 Gy and HEH fluence 8.5x10¹¹ cm⁻².
- SETs observed in data transmission, average device cross-section
 σ = ~ 1x10⁻¹¹ cm² in worst case conditions

Schmitt Trigger 74LVT14D

- Report: EDMS #2417025
- TID 500 Gy, HEH fluence 8.5x10¹¹ cm⁻²
- No large variation/degradation of all quantities

10 DOLA	3 ICI68	
		3.
L	1014C R.10	10

BJT Transistors: BC847B and PZT2222AT1G

- **Report**: EDMS #2454604
- TID 500 Gy, HEH fluence 8.5x10¹¹ cm⁻²
- Worst case degradation of 40%, within the manufacturer specifications

Radiation Tests Results - Optocoupler

	Cross-section [cm2/device]		
Reference	Input OFF	Input ON	
	Output ON	Output OFF	
FOD060RL	3.94 · 10 ⁻⁸	6.43 · 10 ⁻¹⁰	
HCPL-060L -500E	3.67 · 10 ⁻⁸	3.31 · 10 ⁻¹¹	

FOD060: ~ 128 SET in 2x10¹¹ cm⁻²

- HCLP-060L: ~ 7 SET in 2x10¹¹ cm⁻²
- No variation of shape and pulse duration
- **Present CIBU** optocoupler $\sigma_{\text{SEE}} = \frac{8.3 \times 10^{-10} \text{ cm}^2}{10^{-10} \text{ cm}^2}$
- **Report**: EDMS #2416544
- DDEF:
 - FOD060L: ~ 9x10¹² cm⁻² 1MeV neq (AlGaAs)
 - HCPL-060L: ~ 5x10¹² cm⁻² 1MeV neq (GaAsP)
- Strong response to TID and DD.
- Neutrons test foreseen.

Courtesy of BE-CEM-EPR

TEST OF FULL CIBU CRITICAL CIRCUIT

- Steps of 100 Gy and 1.7E11 p/cm2 fluence
- Reached 500 Gy and HEH 8.5 x10¹¹ cm⁻²
- Hi-Lumi <u>ultimate</u> target: TID 280 Gy, HEH 1.4x10¹⁰ cm⁻² max. annual
- **Report**: EDMS #2415099
- Total cross-section σ < 4.4 x 10⁻¹² cm⁻² (95% confidence)
- Test @ CHARM in 2021/2022

Conclusions

WIC

- System requires upgrade. Transfer lines crates affected by radiation
- Strategy: Test S7 1500 Siemens IOs at Co60 (2021) and if successful CHARM (2021/2022)
- S7 1500 Batch reserved
- Keep **DIOT** as a possibility.

PIC

- Deployed in LHC, in particular affected by radiation in the RRs.
- Strategy: use DIOT system to replace current hardware in radiation

BIS - CIBU

- CIBU v2: Highly critical interface with users connected to the BIS. Particularly impacted by radiation in the RRs.
- Strategy: tests at component level at PSI, tested the full critical circuit.
- **To Do**: Test Monitoring COTS, Power Supply, Neutron Test on optocoupler.
- Planning a test at CHARM in 2021/2022 to validate the system

