

Terrestrial neutron effects on commercial SiC power MOSFETs

Corinna Martinella

R. G. Alia, R. Stark, A. Coronetti, C. Cazzaniga, M. Kastriotou, Y. Kadi, R. Gaillard, U. Grossner, A. Javanainen

R2E Annual Meeting – 2-3 Feb, 2021 <https://indico.cern.ch/event/971222/>

1. Introduction on SiC power MOSFETs

2. Atmospheric-like neutron experiment

3. Results

4. Conclusions

Introduction - SiC material

Silicon carbide (SiC) is a **wide bandgap material** with an energy gap of **3.23 eV** (4H-SiC at 25 ֯C), almost 3 times the bandgap of Si (1.12 eV).

The physical, electrical and thermal properties of SiC are attractive for **power devices applications:**

 high voltage operations; **high temperatures** applications; **switching frequencies** (>100 kHz); **lower conduction losses** than Si.

Introduction - SiC in high-energy accelerators

- \Box SiC MOSFETs are a promising technology for high-energy accelerators.
- SiC MOSFETs were considered for the design of a **prototype inductive adder (IA)** based on semiconductor switches, to be used as a pulse generator for the injection kicker magnets in FCC and in PS (TE/ABT). D. Woog *et al., Journal of Physics*, Conf. Ser. 874 012096, Jul. 2017. D. Woog *et al.,* in IPMHVC 2018, 2018, pp. 464–468, doi: 10.1109/IPMHVC.2018.8936655.

Requirements from TE/ABT:

- \Box Voltage rating >1.2 kV;
- Pulse current rating > 150 A;
- On state resistance \lt 100 mΩ:
- \Box Current rise/fall time $<$ 25 ns.
- **Marx generator** based on SiC MOSFETs for use in SPS and potentially LHC (IA technology not suitable due to longer pulses).
- L. M. Redondo *et al.*, *IEEE Trans. Plasma Sci.*, vol. 46, no. 10, pp. 3334–3339, 2018.
- **Neutrons** can cause issues for electronic systems in underground areas

at CERN. **Radiation tests** to assess the reliability of SiC MOSFETs.

R. García Alía *et al.*, *IEEE Transactions on Nuclear Science*, vol. 65, no. 1, pp. 448-456, Jan. 2018.

Introduction - SEE on SiC power MOSFETs

C. Martinella *et al.*, *IEEE Trans. Nucl. Sci.*, vol. 67, no. 7, pp. 1381–1388, Jun. 2020.

R₂E

Regions of damage for SiC power MOSFETs:

- **Region 1: charge collection**, no permanent damage. Heavy ions, protons and neutrons.
- **Region 2: Single Event Leakage Current (SELC)**. **Permanent increase of drain and gate leakage currents. Not observed with Si power MOSFETs**. Reported only with heavy ions.
- **Region 3:** destructive **Single Event Burnout (SEB)**. Heavy ions, protons and neutrons.

Introduction - SEB on SiC power MOSFETs

R₂E

SEB mechanism in SiC power MOSFETs:

- For Si Power MOSFETs the SEB is associated with the **parasitic n-p-n BJT** and tunneling assisted avalanche multiplication mechanisms.
- Similar SEB tolerance for **SiC MOSFETs** and **SiC diodes**. No parasitic BJT in diode structure.
- \Box The mechanisms underlying the SEB in Si MOSFETs might be **suppressed** in SiC MOSFETs where the **current gain** of the parasitic BJT is **lower**.

H. Asai *et al.*," *IEEE Trans. Nucl. Sci.*, vol. 61, no. 6, pp. 3109–3114, Dec. 2014.

Introduction - SEB with neutrons

SEB with neutrons – Hypothesis from Akturk *et al.***:**

A. Akturk *et al.*, *IEEE Trans Nucl. Sci.*, vol. 65, no. 6, Jun 2018.

- Neutrons are non-ionizing particles. Recoiling atoms create a large number of electron and hole (e–h) pairs along their trajectories, which can enter the N-drift layer.
- Hole impact ionization with associated multiplication factors, **thermal transient** and excessive lattice temperatures.
- **Local lattice sublimation**, formation of voids, loss of device blocking ability, hence a **destructive failure**.

Experimental setup and method

OBJECTIVE:

Investigate the effect of **atmospheric-like neutron** on different commercial SiC MOSFETs. The experiment was performed at the **ChipIr** facility, UK.

SETUP:

- Military standard: **MIL-STD-750E M1080.1**.
- 2 boards, each with 12 DUTs in parallel.

R₂E

- **□ Total I_D** measured by a Keithley SMU 2410.
- \Box A fixed step increase in the total I_D monitored was accounted as a failure.

EXPERIMENT:

- \Box Irradiations at $V_{DS} = 1100$ V, 976 V, 846 V (~92%, ~81%, 72% of 1.2 kV), $V_{GS} = 0V$.
- Up to 50%–70% of device failed or **fluence of 2.8 x 10¹⁰ n/cm²** .

Devices under test

DUTs:

- Commercial **SiC power MOSFETs (1.2 kV)** selected following the **TE/ABT requirements** for IA design;
- 3 architectures: **planar gate**, **trench gate**, **double trench** (trench gate and source);

(i.e. $I_D > 1$ mA). The highest is the double-trench DUT from **Rohm** (i.e. SCT3030KL).

R_{2E}

TARLEI LIOD OF BELIGES LBIBER GESE

Results - Cross-sections and FIT rates

■ Standard 2-parameter **Weibull distribution** using a maximum likelihood estimation (MLE) method. Error bars calculated considering a **Poisson distribution** dominated by the count statistics.

- **FIT rates** normalized with the active area and scaled by the breakdown voltage. **Common voltage dependence**.
- The **trench DUTs** are more robust. The **double-trench** from Rohm (i.e. SCT3030KL) has the best performance.

Results - Post-irradiation analysis

A **planar gate from Cree/Wolfspeed** (i.e., C2M0025120D), a **trench gate from Infineon** (i.e., IMW120R090M1H) and **double trench from Rohm** (i.e., SCT3030KL) were analyzed after the irradiation.

3 different responses identified from the post I-V analysis:

- **(i) No damage** observed respect to a reference pristine
- **(ii) Partial degradation** with enhanced leakage currents
- **(iii) Ohmic trend** of the leakage current caused by **SEB**

Post-irradiation analysis for DUTs (ii):

Avalanche breakdown measurement at $V_{GS} = 0$ V, to study the degradation of the blocking capability.

 \Box **I_DV_{GS}** and **I_GV_{GS}** at V_{DS} = 1 V to study the gate damage.

Post-irradiation analysis (ii) – Breakdown Voltage

Avalanche breakdown measurement at $V_{GS} = 0$ V, to study the degradation of the blocking capability.

 Among the failed devices, no ohmic behaviour, but **higher gate and drain leakage currents** (out of spec. I^g > 100 nA). **Different leakage path** between the planar and the trench DUTs.

Post-irradiation analysis (ii) – Gate damage

 I_D **V**_{GS} and I_G **V**_{GS} measurements at V_{DS} = 1 V to study the gate damage and the different leakage path.

Planar DUT:

- □ Very high gate leakage current;
- The **channel** is still **operable**;
- **Partial gate rupture**. Similar to SELC observed with heavy-ions.

Trench and double trench DUT:

- The channel is **not operable** anymore;
- **Complete gate rupture**.

Conclusions

SiC power MOSFETs are a promising technology for accelerator applications, but they are still **sensitive** to neutrons.

- **Cross-sections** and **FIT rates** were presented. The trench MOSFETs appear to be more robust to failure respect to the planar ones. The **double trench** DUTs from Rohm (i.e. SCT3030KL) showed the **best performance**. This might be due to the **higher breakdown voltage** (1.9 kV) and double-trench architecture.
- Among the failed devices, **the degradation is not always the same magnitude**. From the post I-V analysis, some devices showed an ohmic trend (iii), while others were still operable, but the gate and drain leakage were out of specifications (ii).
- A **partial gate rupture** mechanism was observed for the **planar DUTs,** which exhibited very high leakage currents and a gate-drain current path, similar to SELC previously reported with heavy-ions. The **trench MOSFETs**, instead, were more sensitive to a **complete gate rupture.**

C. Martinella et al., "Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies", under revision for IEEE TNS Journal.

Contact: corinna.martinella@cern.ch

Advanced Power Semiconductor Laboratory

Thank you for your attention!

Backup slides

ON
R_{2E}

Failure Analysis

01

FIT rates

