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SEE and Cumulative effects in St MOSFETSs.

Single Event Gate Rupture (SEGR):
Single Event Burnout (SEB): due to the induced charges close to the oxide can
parasitic bipolar transistor, a regenerative ' generate electric field exceeding the
current can be stablished leading to burnout breakdown limit.
(not typical of PMOS). Addutonal induced
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Displacement Damage is less relevant in MOSFET than in bipolar technology due to its majority carrier technology, for typical fluences of
LHC tunnel. At fluences higher than 104 p cm2 displacement damage increases R, due to impurities in the channel.
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SEB In SI MOSFETS

Test of several COTS MOSFETSs at same energies and different LET
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Why Wide Band-Gap devices?

High voltage
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= Wide band-gap semiconductors (SiC, GaN) allow devices to operate at higher
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Previous testing of SIC and GaN

CERN: Extensive work by C. Martinella with SiC MOSFET concerning SEB and SELC (see previous
presentation).

SiIC MOSFETs at RADSAGA:
CHARM: SEB cross section for CREE C3M0120090D at 3.1e-10 cm? @850V. Fluence 2e9 n/cm?.

ChiplR: SEB cross section for CREE C3M0120090D at 4.5e-11 cm? @750V. Fluence 2e11 n/cm?2.

Further studies suggest TID damages are still present.

S. Gerardin, 2013, “Radiation performance of new semiconductor power devices for the LHC experiment upgrades”

GaN HEMTs at RADSAGA:
GANIL: SEBs detected at 83 and 100% Vg a0 12 PGA26E19BA DUTS. Fluence 3e6 i/cm?.

CHARM: No events up to 2e9 n/cm?, 20 EPC2012 DUTs and 20 PGA26E19BA DUTSs.
ChiplR: No events up to 1.5el11 n/cm?, 48 PGA26E19BA DUTSs.
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Test setup and DUTs at ChipIR

= 4 references tested (100V and 600V). x2 DUTs of each reference.

= |rradiation board provides protective system in case of destructive event and device
characterisation of I-V curves.

= DUTs monitored in two ways: drain/gate total current consumption and drain transients
monitored via oscilloscope.

= Test performed remotely with the on-site assistance of our colleagues Maria Kastriotou and
Carlo Cazzaniga from ChipIR.
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Destructive and partially destructive SEE

Permanent events GaN HEMTs Cross section
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Destructive and partially destructive SEE

= 600V PGA26EQ7BA, one destructive event detected. Effect is the short-circuit of drain and source. No
gate damage. GS66508P no events.

= 100V EPC2045, two partially destructive events, due to leakage current increase by two orders of
magnitude. No gate damage. GS61008P no events.
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Cumulative effects. Leakage current.
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Cumulative effects. Leakage current.
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Cumulative effects. Leakage current.

Leakage Current [A]
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Cumulative effects. Threshold voltage.
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Cumulative effects. Threshold voltage.
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Conclusions and future work

= GaN HEMTs (x4@100V and x4@600V) have been tested in ChipIR up to 2.5e11 h cm=2s-1,

= No destructive events observed in 100V devices. One destructive events in 600V devices
one, setting cross sections in the order of 1e-11 cm? at 100% V.

= Cumulative damage by neutrons is very limited, with a slight decrease in leakage current,
no effect on the threshold voltage and a decrease in transconductance for large gate
voltages.

= Further testing SEE with protons/heavy ions and TID with gamma rays.
= Characterisation of the devices to check room temperature annealing.

= Need to correlate radiation effects with existing technologies for substrates and gate
structures of GaN HEMTSs.

= Special acknowledgments to Maria Kastriotou and Carlo Cazzaniga from ChipIR without
whom the campaign would not have been possible.
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Thank you for

your attention!
mario.sacristan.barbero@cern.ch
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