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Background: Hadrons as QCD bound-states

Cross section of e+ e− hadronic annihilation
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Background: Mesons as two-body bound-states
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as
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where the f
(j)
i (l2, l ·k, k

2
, µ

2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧i(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ k
µ do not survive in the quark-DSE integral

because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�
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and l
µ are referred to as the vector and scalar components, respectively.

Using the STIs in Landau gauge, Z1F = Z2/Z̃3 and Zg Z̃3 Z
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3 = 1, where Z̃3, Z3

and Zg are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes
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where we defined the coe�cients ↵
(j)
i as combinations of the gluon dressing function

and the vertex dressings:
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They are independent of the renormalization point, as can be inferred from Zg Z̃3 Z
1/2
3 =

1 and the renormalization-scale dependence of the quantities g ⇠ 1/Zg, Z ⇠ 1/Z3 and
fi ⇠ Z2/Z̃3.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

• One-body gap equation

λ(P2)

5

• Two-body Bethe-Salpeter equation

Background: Bethe-Salpeter equation for mesons

Interaction Kernel

Scattering Kernel
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λ(P2)

Ĥ |ϕ⟩ = |ϕ⟩E

Background: Bethe-Salpeter equation for mesons

✦ The kernel (or the Hamiltonian) must respects all QCD’s symmetries. 

✦ Quarks are relativistic; and infinitely many virtual quarks are created.
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• Relativistic bound states

“These problems are those involving bound states [...] such problems necessarily involve a breakdown of 
ordinary perturbation theory. [...] The pole therefore can only arise from a divergence of the sum of all 
diagrams […]”

The QFT book vol1 p564 Weinberg

• Strongly coupled systems

•Asympto1c	Freedom:	Bonds	between	par0cles	become	
asympto0cally	weaker	as	energy	increases	and	distance	
decreases	(Solved,	Nobel	Prize).	

•Color	Confinement:	No	maAer	how	hard	one	strikes	the	
proton,	one	cannot	liberate	an	individual	quark	or	gluon	
(Millennium	Problems).	

•Dynamical	Chiral	Symmetry	Breaking:	Mystery	of	bound	
state	masses,	e.g.,	current	quark	mass	(Higgs)	is	small,	
and	no	degeneracy	between	parity	partners.

QCD running coupling constant

Background: Bethe-Salpeter equation for mesons



Si-xue Qin: 2020-12-01 @ e-Workshop, AMBER@CERN / 168

Development (i): DCSB in the interaction kernel

+  … =Quark-gluon vertex:

Spacetime

q Chiral symmetry

q Poincaré symmetry

q Gauge symmetry
Fields

“Symmetry dictates interaction.”
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q Chiral symmetry: Axial-vector WGTI

q Lorentz symmetry + : Transverse WGTIs

q Gauge symmetry: Vector WGTI

9

Development (i): DCSB in the interaction kernel

✦ The WGTIs express the curls and 
divergences of the vertices.

See, e.g., PLB722, 384 (2013)

Γμ(k, q) ∼ ΔB(k2, q2)

Interaction DCSB

✦ The WGTIs of the vertices in different 
channels couple together. 

✦ The WGTIs involve contributions from 
high-order Green functions.
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Development (ii): Symmetries of the scattering kernel

+  … =

Pion

Goldstone's theorem: If a generic 
continuous symmetry is spontaneously 
broken, then new massless scalar 
particles appear in the spectrum of 
possible excitations.

Bound state of quark and anti-quark, 
but abnormally light:
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✦ Permutation:

+ +  etc.

✦ P and T symmetries:

+ + +

Lorentz covariance guarantees CPT-symmetry; T-symmetry is obtained for free.

✦ Charge-conjugation:

Development (ii): Symmetries of the scattering kernel
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I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,
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Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,

K↵↵0,�0�(q±, k±)[S(q+) � S(q�)]↵0�0 = �Dµ⌫(k � q)�µS(q+) � S(q�)�⌫(q�, k�)

+Dµ⌫(k � q)�µS(q+) � K+
⌫
(q±, k±)

+Dµ⌫(k � q)�µS(q+) �5 � �5 K�
⌫
(q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.

For simplicity, suppressing the momentum dependences (Dµ⌫ = Dµ⌫(k � q), S+ ⌘ S(q+), S� ⌘ S(q�), �+
⌫
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Assuming that the above identities are fulfilled with any gluon propagator model, one has to require their integral
kernels to be identical, i.e.,
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The Bethe-Salpeter equation and the quark gap equation are written as

The color-singlet axial-vector and vector WGTIs are written as

2

I. NEW KERNEL

At the first place, I tried all existed Bethe-Salpeter kernels. I found that none of them is perfect. Their significant
flaw is that in the timelike region where bound-states exist they have artificial singularities. Because of the singularities,
bound-states can be not properly described. After analyzing numerous schemes to remove the singularities, I eventually
realize that we have to consider the color-singlet vector and axial-vector WGTIs, simultaneously, to construct a
kinematic-singularity-free kernel.

Let us start the story at the very beginning. The color-singlet vector and axial-vector WGTIs read, respectively,

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k+)i�5 + i�5S
�1(k�), (1)

iPµ�µ(k, P ) = S�1(k+)� S�1(k�). (2)

As we known, the quark propagator depends on the quark-gluon vertex while the vertices depend on the quark–anti-
quark scattering kernel. Can we build a relation between the vertex and the kernel? In order to answer the question,
we insert the following equations into the WGTIs,

�H

↵�
(k, P ) = �H

↵�
+

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0 , (3)

S�1(k) = S�1
0 (k) +

Z

q

Dµ⌫(k � q)�µS(q)�⌫(q, k), (4)

where the color structure is suppressed because it just contributes a factor to the integral. We obtain
Z

q

K↵↵0,�0�{S(q+)[S�1(q+)� S�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)� S(q�)�⌫(q�, k�)],

Z

q

K↵↵0,�0�{S(q+)[S�1(q+)�5 + �5S
�1(q�)]S(q�)}↵0�0 =

Z

q

Dµ⌫(k � q)�µ[S(q+)�⌫(q+, k+)�5 � �5S(q�)�⌫(q�, k�)].

Now we have two equations in hand to constrain the kernel. Plainly, two unknowns can be solved by the two equations.
That is to say, the kernel has two structures to be exposed by the WGTIs. In previous works, the vector and axial-
vector WGTIs were considered separately and the vertices in di↵erent channels were solved with di↵erent forms of the
kernel. If one enforces the vertices to share the same kernel, the WGTIs then can not be compatible with each other.
Here, we assume that all vertices share the same kernel which has two unknown structures to be determined by the
WGTIs. The “two” is perfect because there is neither incomplete nor overdetermined constraints for the kernel.
Explicitly, the kernel has the following structure,

K↵↵0,�0�(q±, k±)[S(q+) � S(q�)]↵0�0 = �Dµ⌫(k � q)�µS(q+) � S(q�)�⌫(q�, k�)

+Dµ⌫(k � q)�µS(q+) � K+
⌫
(q±, k±)

+Dµ⌫(k � q)�µS(q+) �5 � �5 K�
⌫
(q±, k±), (5)

where � denotes the inserted vertex. In the above expression, the first term in the right hand side is a one-
gluon exchange form with the dressed quark-gluon vertex, which is a straightforward improvement of the ladder
approximation. Obviously, this single term violates the WGTIs. The K± terms rescue the symmetries and can be
determined by the WGTIs. The �5 in the last term indicates that K± act on the vertex in two di↵erent ways.
Namely, K± have a sort of “chiral” relation as the vector and axial-vector WGTIs do. It should be pointed out that
the appearance of �5 is crucial because the kernel degenerates to the traditional one if �5 are simply removed.

For simplicity, suppressing the momentum dependences (Dµ⌫ = Dµ⌫(k � q), S+ ⌘ S(q+), S� ⌘ S(q�), �+
⌫

⌘
�⌫(q+, k+), and ��

⌫
⌘ �⌫(q�, k�)), we have

Z

q

Dµ⌫�µS+(�
+
⌫
� ��

⌫
) =

Z

q

Dµ⌫�µS+(S
�1
+ � S�1

� )K+
⌫
+

Z

q

Dµ⌫�µS+�5(S
�1
+ � S�1

� )�5K�
⌫
, (6)

Z

q

Dµ⌫�µS+(�
+
⌫
�5 + �5�

�
⌫
) =

Z

q

Dµ⌫�µS+(S
�1
+ �5 + �5S

�1
� )K+

⌫
+

Z

q

Dµ⌫�µS+(�5S
�1
+ + S�1

� �5)K�
⌫
. (7)

Assuming that the above identities are fulfilled with any gluon propagator model, one has to require their integral
kernels to be identical, i.e.,

�+
⌫
� ��

⌫
= (S�1

+ � S�1
� )K+

⌫
+ �5(S

�1
+ � S�1

� )�5K�
⌫
, (8)

�+
⌫
�5 + �5�

�
⌫
= (S�1

+ �5 + �5S
�1
� )K+

⌫
+ (�5S

�1
+ + S�1

� �5)K�
⌫
. (9)

The derived WGTIs between the scattering kernel and the interaction kernel:

Development (ii): Symmetries of the scattering kernel
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✦ A deep connection between one-body and two-body problem:

Pion exists if, and only if, the quark mass is 
dynamically generated.

Two-body problem solved, almost completely, 
once solution of one-body problem is known.

Development (ii): Symmetries of the scattering kernel

γμ

γν

γμ

σlν

✦ A minimal kernel involves the Dirac terms and the Pauli terms: 

σlμ

σlν

K’

See, e.g., arXiv:2009.13637 (2020)
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✦ Gell-Mann-Oakes-Renner relation:

Results: Meson spectroscopy
M
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✦ Goldberger-Treiman relation:

See, e.g., arXiv:2009.13637 (2020)

✦ In the chiral limit, the mass function is 
proportional to the BSA:

where the normalized BSA:

✦ The square of pion mass is proportional 
to the quark current mass: 

where the extracted chiral condensate:
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✦ Impact of the Pauli term (AM):
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✦ Light-flavor meson spectrum:

✦ With increasing the AM strength, the 
a1−ρ mass-splitting rises very rapidly. 
From a quark model perspective, the 
DCSB-enhanced vertex increases 
spin-orbit repulsion.

✦ The spin-orbit boosted quark-core 
mass of the f0 is greater than the 
empirical value, and matches an 
estimate the result obtained using 
chiral perturbation theory.

✦ The magnitude and ordering of radial 
excitation states are fixed with the 
DCSB-enhanced vertex.

See, e.g., arXiv:2009.13637 (2020)

Results: Meson spectroscopy
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Summary

Outlook

With the sophisticated approach, we can push it to a much wider range of applications in 
two-body (meson) and three-body (baryon) problems of QCD.

Hopefully, based on more and more successful applications, we may provide a faithful 
path to understand QCD, and the ultimate questions may be addressed.

Quark-gluon vertex: Solve the WGTIs resulting from the fundamental symmetries (gauge, 
chiral, and Lorentz symmetries). The vertex is significantly modified by DCSB feedback.

Scattering kernel: Analyze discrete and continuous symmetries, i.e., color-singlet WGTIs. 
The kernel realizes pion’s twofold role and produces full array of ground and excited mesons.
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Backup
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✦ In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

✦ Assuming DCSB, i.e., the mass function is nonzero, we have the following equation

✦ The axial-vector vertex must involve a pseudo scalar pole (Goldstone’s theorem)

Pion exists if, and only if, mass is dynamically 
generated.

Two-body problem solved, almost completely, 
once solution of one-body problem is known.

See, e.g., PLB733, 202 (2014)
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Development (ii): Symmetries of the scattering kernel


