
AWAKE Run 2C Experiment Requirements => HW Specs

F.M. Velotti, R. Ramjiawan

- CERN
- For AWAKE Run 2c, the main goal is to achieve high gradient plasma WF acceleration AND preserve the accelerated beam quality
- The plan to achieve that is (very roughly) to add an additional plasma cell (2), upgrade the existing proton line, refactor the existing electron line and to design and build a new high energy electron line
 - => 1 p+ line 400 GeV from SPS, 1 e- line ~18 MeV to stabilise accelerating structure, 1 e- line 150 MeV to produce the witness bunch

- CERN
- For AWAKE Run 2c, the main goal is to achieve high gradient plasma WF acceleration AND preserve the accelerated beam quality
- The plan to achieve that is (very roughly) to add an additional plasma cell (2), upgrade the existing proton line, refactor the existing electron line and to design and build a new high energy electron line
 - => 1 p+ line 400 GeV from SPS, 1 e- line ~18 MeV to stabilise accelerating structure, 1 e- line 150 MeV to produce the witness bunch

3

- CERN
- For AWAKE Run 2c, the main goal is to achieve high gradient plasma WF acceleration AND preserve the accelerated beam quality
- The plan to achieve that is (very roughly) to add an additional plasma cell (2), upgrade the existing proton line, refactor the existing electron line and to design and build a new high energy electron line
 - => 1 p+ line 400 GeV from SPS, 1 e- line ~18 MeV to stabilise accelerating structure, 1 e- line 150 MeV to produce the witness bunch
- All this leads though to very tight specifications for the 150 MeV electron line...

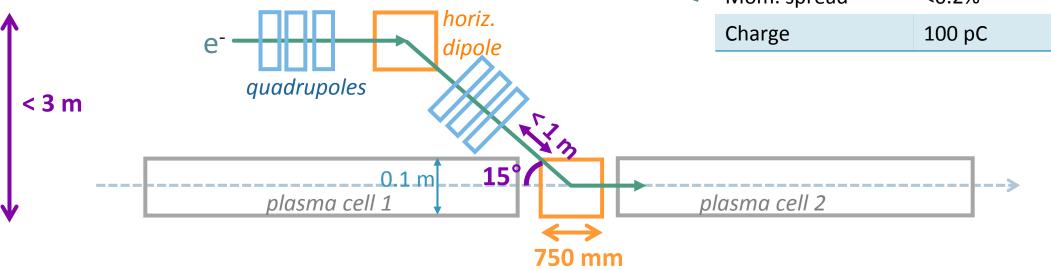
Dispersion 0 $\sigma_{x,y}$ 5.75 µm	
Bunch length $200 \text{ fs/60 } \mu\text{m}$ Electron energy 150 MeV $\epsilon_{x,y}$ <2 mm mrad	
Electron energy 150 MeV	
XMom. spread<0.2%	
Charge 100 pC	

- CERN
- For AWAKE Run 2c, the main goal is to achieve high gradient plasma WF acceleration AND preserve the accelerated beam quality
- The plan to achieve that is (very roughly) to add an additional plasma cell (2), upgrade the existing proton line, refactor the existing electron line and to design and build a new high energy electron line
 - => 1 p+ line 400 GeV from SPS, 1 e- line ~18 MeV to stabilise accelerating structure, 1 e- line 150 MeV to produce the witness bunch
- All this leads though to very tight specifications for the 150 MeV electron line...
- ...and even more challenging for the proton line

At injection point	Parameter	Nominal value
	Dispersion	0
	$\sigma_{x,y}$	5.75 μm
	Bunch length	200 fs/60 μm
	Electron energy	150 MeV
	$\epsilon_{x,y}$	<2 mm mrad
	Mom. spread	<0.2%
	Charge	100 pC

- For AWAKE Run 2c, the main goal is to achieve high gradient plasma WF acceleration AND preserve the accelerated beam quality
- The plan to achieve that is (very roughly) to add an additional plasma cell (2), upgrade the existing proton line, refactor the existing electron line and to design and build a new high energy electron line
 - => 1 p+ line 400 GeV from SPS, 1 e- line ~18 MeV to stabilise accelerating structure, 1 e- line 150 MeV to produce the witness bunch
- All this leads though to very tight specifications for the 150 MeV electron line...
- ...and even more challenging for the proton line
- The main challenge, though, seems to be in the stability for both beam size (e-) and trajectory (both e- and p+)

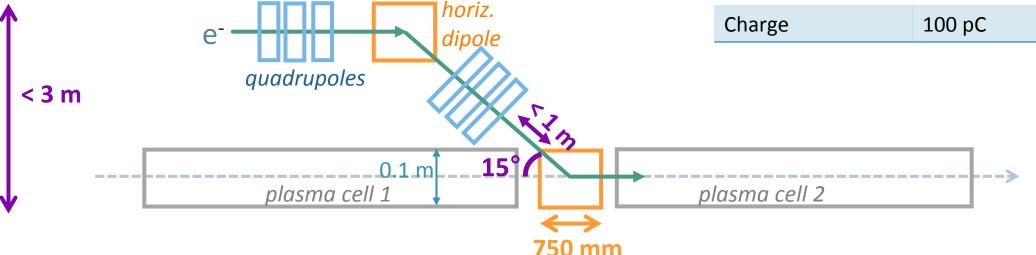
int	Parameter	Nominal value	
	Dispersion	0	
bo	$\sigma_{x,y}$	5.75 μm	
injection point	Bunch length	200 fs/60 μm	
	Electron energy	150 MeV	
At inj	$\epsilon_{x,y}$	<2 mm mrad	
	Mom. spread	<0.2%	
	Charge	100 pC	


Beamline design

7

- $\sigma^*[\mu m] = \sqrt{4.87[mm] \times \epsilon[nm]}$ at injection.
- Achromatic and no bunch lengthening.
- Gaussian beam at injection point.
- α = 0 at injection point.
- Spatial constraints from 1 m plasma cell gap.
- Relative alignment between proton and electron beams of <13 um
- Width < 3 m.

	Parameter	Nominal value
point	Dispersion	0
	$\sigma_{x,y}$	5.75 μm
injection	Bunch length	200 fs/60 μm
ect	Electron energy	150 MeV
	$\epsilon_{x,y}$	<2 mm mrad
At	Mom. spread	<0.2%
	Charge	100 pC


Beamline design

- $\sigma^*[\mu m] = \sqrt{4.87[mm] \times \epsilon[nm]}$ at injection.
- Achromatic and no bunch lengthening.
- Gaussian beam at injection point.
- α = 0 at injection point.
- Spatial constraints
- Relative alignment beams of <13 um
- Width < 3 m.

Required parameters achieved in the <u>ideal</u> case

At injection point	Parameter	Nominal value	
	Dispersion	0	
	$\sigma_{x,y}$	5. 7 5 μm	
	Bunch length	200 fs/60 μm	
	Electron energy	150 MeV	
	$\epsilon_{x,y}$	<2 mm mrad	
	Mom. spread	<0.2%	
	Charge	100 pC	

Beamline design

- $\sigma^*[\mu m] = \sqrt{4.87[mm] \times \epsilon[nm]}$ at injection.
- Achromatic and no bunch lengthening.
- Gaussian beam at injection point.
- α = 0 at injection point.
- Spatial constraints
- Relative alignment beams of <13 um
- Width < 3 m.

< 3 m

Required parameters achieved in the ideal case Still quite far when considering real elements! quadrupoles

0.1 m

plasma cell 1

15°

750 mm

	Parameter	Nominal value	
point	Dispersion	0	
	$\sigma_{x,y}$	5.75 μm	
	Bunch length	200 fs/60 μm	
ect	Electron energy	150 MeV	
At injection	$\epsilon_{x,y}$	<2 mm mrad	
A	Mom. spread	<0.2%	
	Charge	100 pC	

plasma cell 2

 Requirement calculated by M. Weidl of relative alignment between p⁺ and e⁻ beams of < 13 μm at the injection point.

M. Weidl, https://edms.cern.ch/document/2427196/0.1

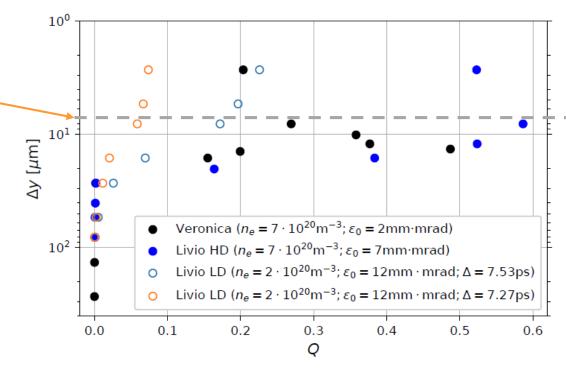
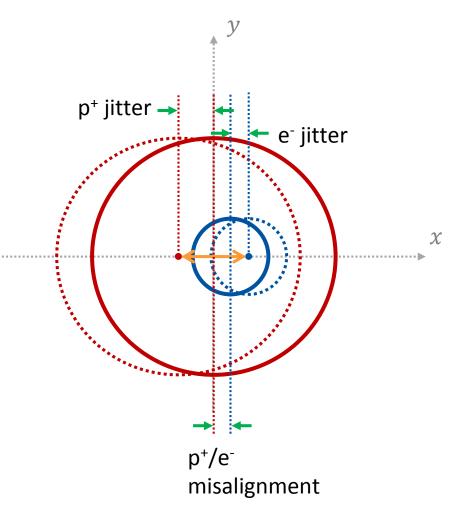
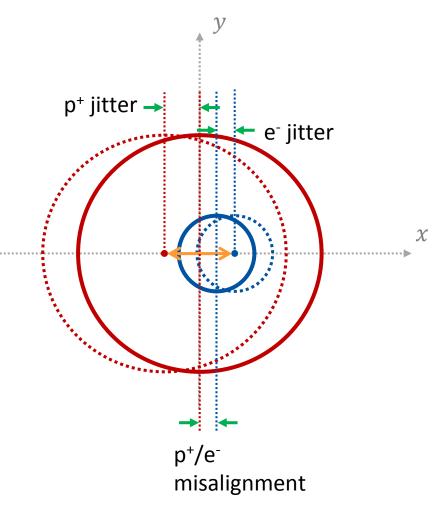



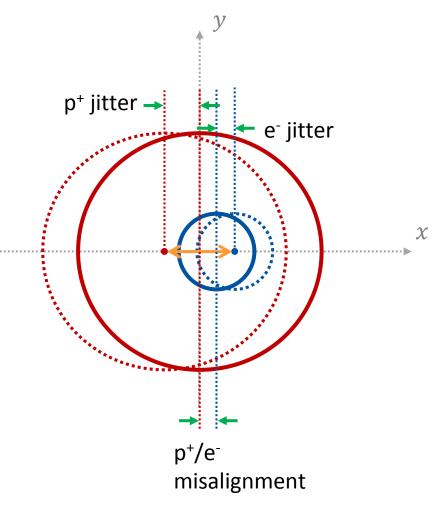
Figure 1: Dependence of the beam goodness metric Q (high is good) on the initial transverse offset Δy for four different beam parameters at the end of the ten-metre accelerating stage (qv3d simulations)


The 13 µm budget for the relative alignment of the beams must include misalignments and jitters for both beams.

Offset between p⁺ and e⁻ beams including misalignment and jitters of both beams.

The 13 µm budget for the relative alignment of the beams must include misalignments and jitters for both beams.

=> this basically means that the rms jitter per beam should be in the order of 2 um!!!



Offset between p⁺ and e⁻ beams including misalignment and jitters of both beams.

The 13 µm budget for the relative alignment of the beams must include misalignments and jitters for both beams.

=> this basically means that the rms jitter per beam should be in the order of 2 um!!!

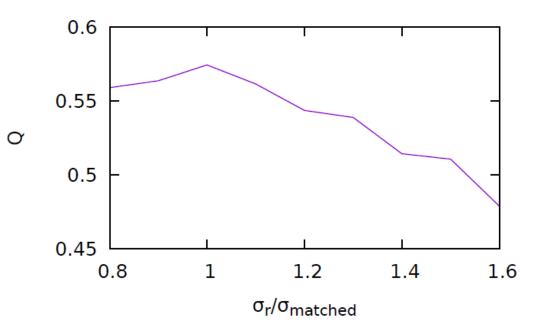
On top we should then add the resolution of the BTV to measure position of both beams!

Offset between p⁺ and e⁻ beams including misalignment and jitters of both beams.

To preserve emittance of witness beam, the "matched" beam size is given by:

$$\sigma_{x,\text{matched}} = \left(\frac{2c^2 \epsilon_{x,0}^{*2}}{\gamma \omega_p^2}\right)^{1/4}$$

With AWAKE experimental parameters...


 $\sigma_{\rm matched} = \sqrt{4.8 \, {\rm mm} \times \epsilon}$

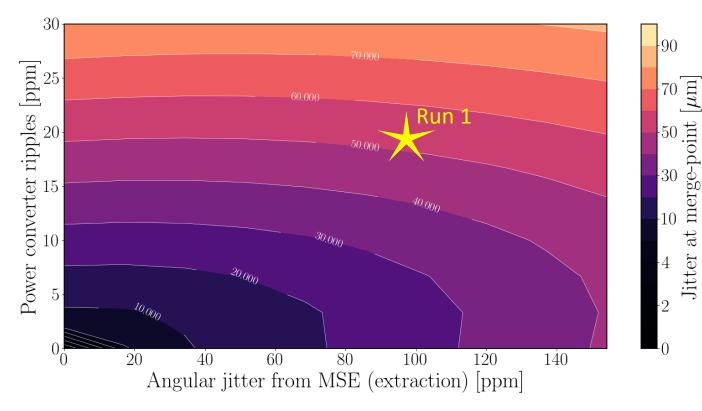
With nominal emittance 2 mm mrad...

 $\sigma_{\rm matched} = 5.75 \,\mu {\rm m}$

From plot (right), should try to keep beam size within **20%** of matched value $< 6.9 \mu m$.

J. Farmer (Awake Run 2 meeting - August 27, 2020)

- Q: acceleration quality
- $\frac{\sigma_r}{\sigma_{matched}}$: ratio of beam size to matched beam size

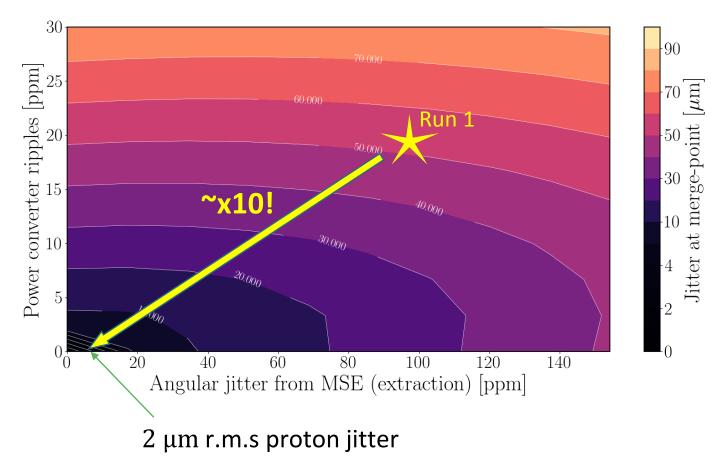

How this translates in HW requirements?

9

Proton beam: shot to shot jitter

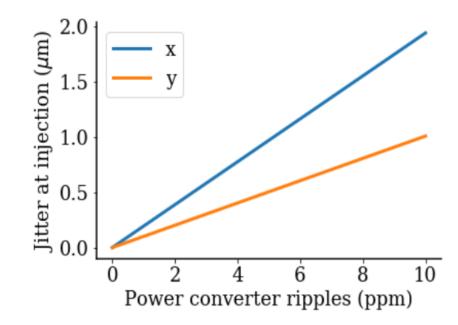
 From data, rms MSE jitter ~100 ppm and average of other converters in TT40/41 ~20 ppm (in agreement with L. Drosdal studies too)

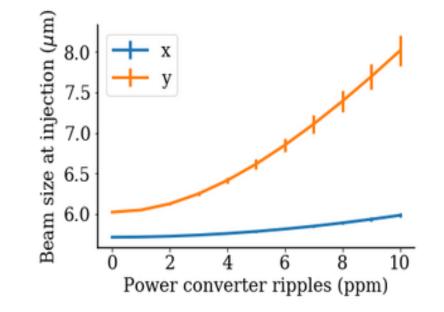
Simulated proton beam position jitter at injection point



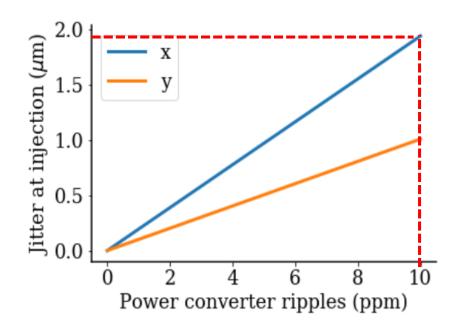
Proton beam: shot to shot jitter

- From data, rms MSE jitter ~100 ppm and average of other converters in TT40/41 ~20 ppm (in agreement with L. Drosdal studies too)
- We can look at the expected (simulations) jitter at the injection point for ripples on all PCs and MSE
- All values given are r.m.s values.
- <u>This is an optimistic case</u>, as it is only considering angular not position jitter.

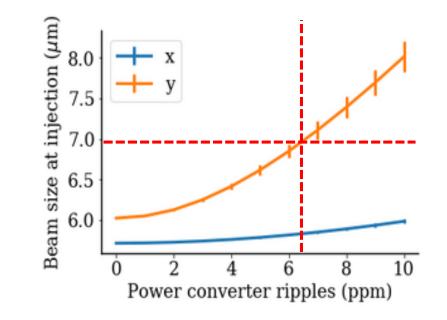

Simulated proton beam position jitter at injection point


Electron line shot to shot variations

- Study effect of power converter ripples on beam stability and beam size at injection point.
- For jitter study, 10 um r.m.s misalignments of all magnets first.
- 50 seeds at for each misalignment, 10 different seeds of misalignment.

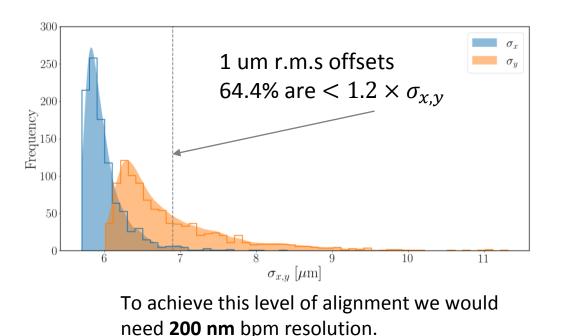

Position shot to shot jitter

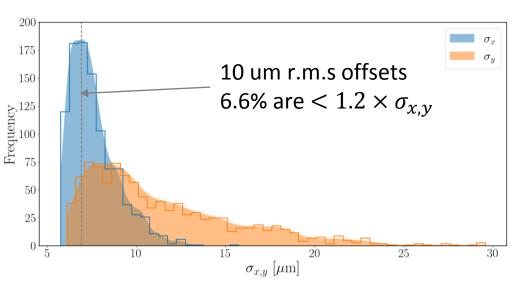
Beam size shot to shot jitter


Electron line shot to shot variations

- Study effect of power converter ripples on beam stability and beam size at injection point.
- For jitter study, 10 um r.m.s misalignments of all magnets first.
- 50 seeds at for each misalignment, 10 different seeds of misalignment.

Position shot to shot jitter


Beam size shot to shot jitter



Instrumentation requirements

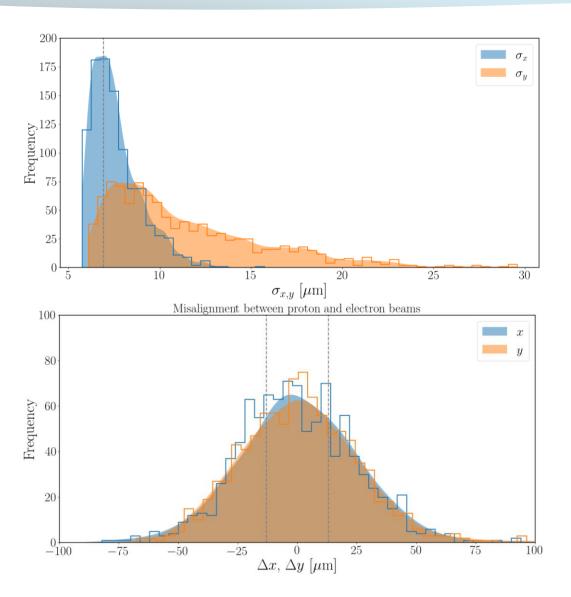
- The more precisely we can align the quadrupoles, the more shots will satisfy experimental beam size requirements.
- Tried to find alignment methods which use measurements of *relative* offsets at BPMs, to reduce requirements for quad-BPM alignments. Will use <u>quadrupole movers for alignment</u> need to be able to resolve small changes in their position.
- BPM resolution requirements better than 1 μm (see plots).
- BPM accuracy requirements depend on the BTV accuracy achievable for p⁺ and e⁻ measurements. First estimation seems to suggest accuracy better than 5 μm for the BPMs in the dogleg needed.

To achieve this level of alignment we would need **1 um** bpm resolution.

Magnet	Label	Int. field strength	4 σ _x [mm]	4 σ _y [mm]	Length	
Dipoles	<i>d</i> _{1,2}	-0.144 Tm	1.244	1.202	0.6 m	1
Quadrupole	<i>q</i> ₁	0.198 T	1.130	1.258	0.3 m	
Quadrupole	<i>q</i> ₂	-0.733 T	0.941	1.881	0.3 m	
Quadrupole	<i>q</i> ₃	1.078 T	1.508	0.807	0.3 m	
Quadrupole	<i>q</i> ₄	0.692 T	8.078	14.371	0.3 m	Quad range:
Quadrupole	<i>q</i> ₅	-0.666 T	2.713	23.371	0.3 m	0.1-1.5 T
Quadrupole	<i>q</i> ₆	0.760 T	6.209	2.895	0.3 m	
Quadrupole	<i>q</i> ₇	-0.666 T	7.646	26.817	0.3 m	
Quadrupole	<i>q</i> ₈	0.692 T	14.226	12.652	0.3 m	
Sextupole	<i>s</i> ₁	7.941 T/m	8.372	10.707	0.1 m	
Sextupole	<i>S</i> ₂	-6.786 T/m	5.636	19.770	0.1 m	
Sextupole	<i>S</i> ₃	-39.953 T/m	2.628	11.263	0.1 m	– <mark>Sext range:</mark>
Sextupole	<i>S</i> ₄	-40.449 T/m	5.623	2.815	0.1 m	_ 2-80 T/m
Sextupole	<i>S</i> ₅	11.340 T/m	1.096	16.878	0.1 m	
Sextupole	s ₆	-4.534 T/m	12.306	11.012	0.1 m]
Octupole	01	230.22 T/m ²	4.324	27.279	0.1 m	
Octupole	<i>0</i> ₂	-637.375 T/m ²	10.983	20.722	0.1 m	Oct range: 100-2000 T/m ²
Octupole	03	1196.745 T/m ²	10.683	9.625	0.1 m	

Example of possible operational scenario

Run 1000 seeds with random errors with distributions as specified below.


Percentage of seeds which satisfy requirements:

- 6.6% satisfy beam size requirements (< $1.2 \times \sigma_{\text{matched}}$)
- 16.3% satisfy offset requirements (< 13 μm)
- 0.6% satisfy both => <280 cycles per AWAKE run (2 weeks)</p>

Gaussian distributions of errors with r.m.s values:

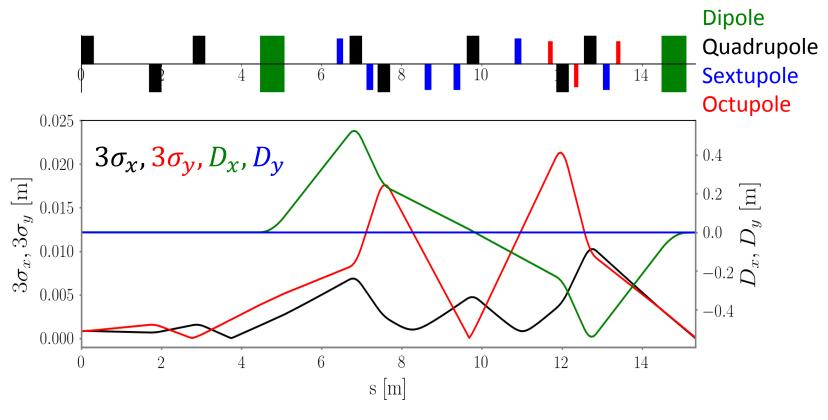
- e-line power converter ripples = 10 ppm (see Appendix)
- Momentum jitter = 1e-3 (see Appendix)
- e-line input position jitter = 10 μm
- Proton line jitter at injection point = 26 μm
 - Power converter ripple = 10 ppm
 - Add angular jitter MSE = 50 ppm
- Dipole misalignments =50 μm
- Magnet field error = 10 ppm
- Quad misalignments = 10 μm
- Sextupole misalignments = 10 μm
- Octupole misalignments = 25 μm
- BPM resolution = 1 μ m
- Field homogeneity not included yet.

More than factor of two smaller than current value.

Summary

- HW requirements for both proton and electron line are very challenging
 - These are obtained as direct translation of experimental specifications
- The main challenge for the proton line is the s2s jitter
 - Need, ideally, a 10 fold improvement in PC ripples of the whole TT40/41 and MSE!
 - Questions:
 - Is this feasible? How long to study, if needed?
 - How long to study and develop a solution?
 - How much could cost something like that?
 - If not, what could be a more reasonable improvement for the PC stability?
- For the electron line, same story but "limited" by beam size => <7 ppm rms on all new PC
 - Questions: see above...
- Magnets initial specifications given
 - They can be used now to see design and then PC dynamic range to request
- Beam instrumentation requirements will be challenging too first numbers out:
 - BPM resolution < 1 μm</p>
 - BPM accuracy closely linked to BTV position accuracy for p+ and e-

Thanks!

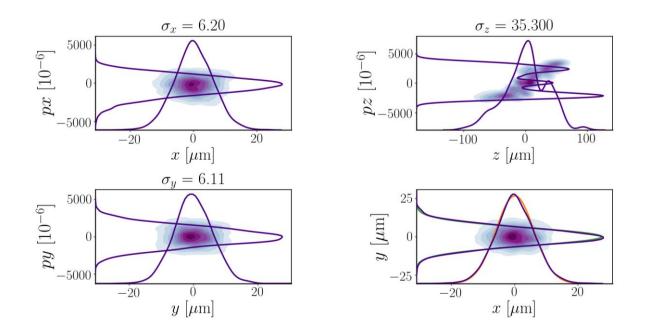

Appendix

Design optimised to meet the matching condition at the plasma merge-point, which requires:

 $\sigma = \sqrt{4.87 \text{ mm} \times \epsilon}$ using statistical emittance at the end of the line:

$$\epsilon = \sqrt{\langle x^2 \rangle \langle p_x^2 \rangle - \langle x p_x \rangle^2}$$

Modelling aperture limits as 2.5 cm.


Current design

Beam at plasma merge-point

CERN

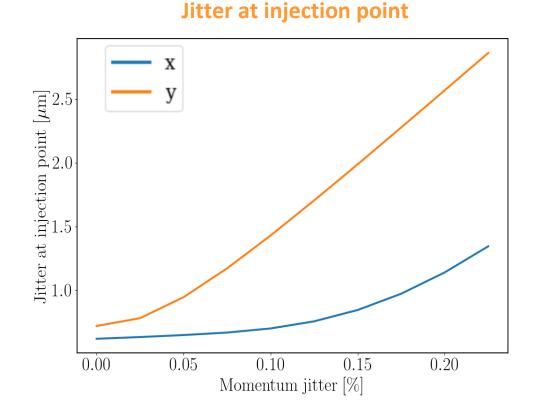
- The matched beam sizes would be 6.2, 6.1 μm and we can achieve this with Gaussian beams.
- Bunch shortening of almost a factor of two would need longer input beams.
- Current minimum beam sizes we can get 5.8, 6.0 um (unmatched).

Parameters at merge-point

•
$$\sigma_x = 6.20 \ \mu m$$

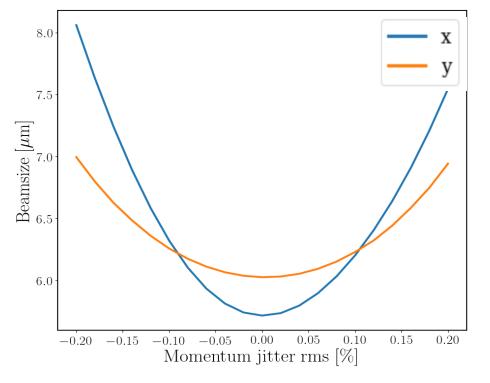
•
$$\sigma_y = 6.11 \, \mu m$$

•
$$\alpha_x = 0.00$$

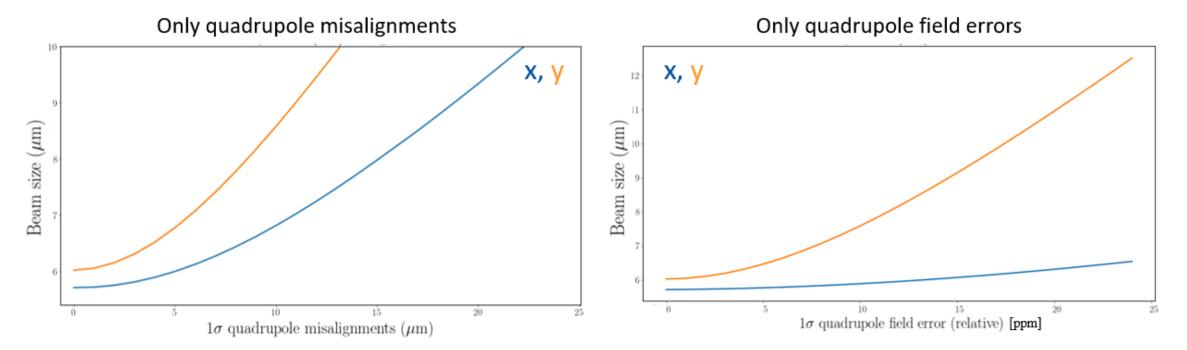

•
$$\alpha_y = 0.00$$

$$D_x = -0.0003$$

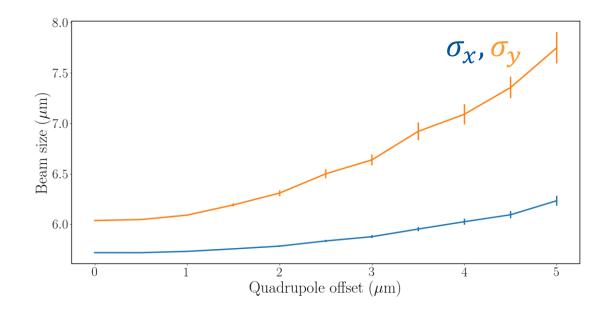
 $D_y = 0$


Momentum jitter

- Study effect of momentum jitter on beam stability and beam size at injection point.
- For jitter study, 10 um r.m.s misalignments of all magnets first.
- 50 seeds at for each misalignment, 10 different seeds of misalignment.

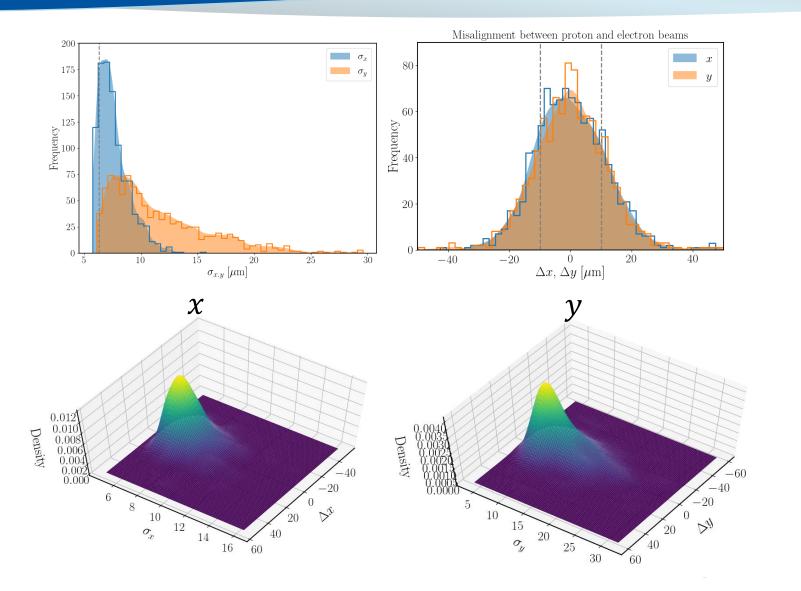


Individual error studies


- We started with studies for each error to see what is the upper limit we could tolerate if that was the only error. Clearly, this is then very a optimistic limit!
- This represents the beam-quad alignment we would have to achieve after steering and alignment.

Magnet misalignments

- The addition of errors/misalignments makes meeting the beam size requirements even more challenging.
- Preliminary error studies have been performed to determine our tolerances for various errors.
- Alignment needed between beam and quadrupoles of $\sim 1 \ \mu m$ (see plot below), for sextupoles of $\sim 5 \ \mu m$ and for octupoles of $\sim 25 \ \mu m$.
- These beam-magnet alignment requirements will require the magnets to be on movers, it is not sufficient just to use correctors to steer the beam.



- 100 seeds of quadrupole misalignments - no other errors and no correction.
- This gives us an upper limit for beam-quadrupole misalignments we can have after beam-based alignment and steering.

Best case: factor of 5 on proton jitter at waist

- 3.9% satisfy beam size requirements
- 39.1% satisfy offset requirements
- 1.1% satisfy both

```
e_power_conv_ripples = 10e-6
mom_jit = 1e-3
input_jit = 10e-6
proton_jit (um) = 10.6
bend_mis =50e-6
field_error = 10e-6
quad_mis = 10e-6
sext_mis=10e-6
oct_mis=25e-6
```

