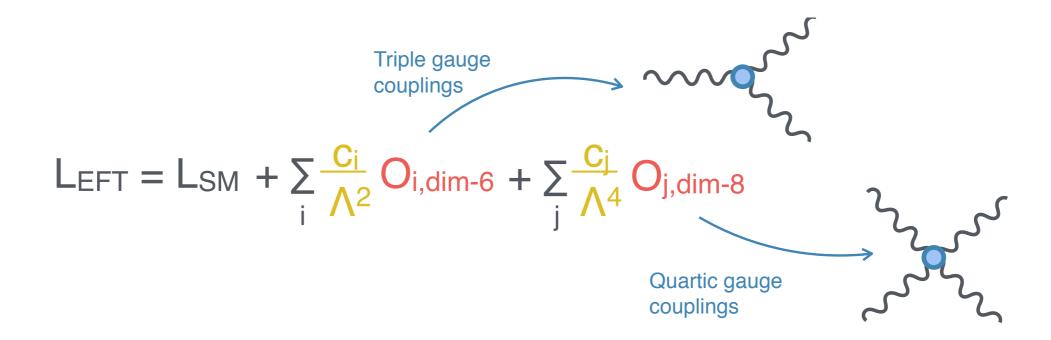


Review of EW WG Conventions

Joany Manjarrés on behalf of the LHCEWMB group

Review of conventions? Which conventions?

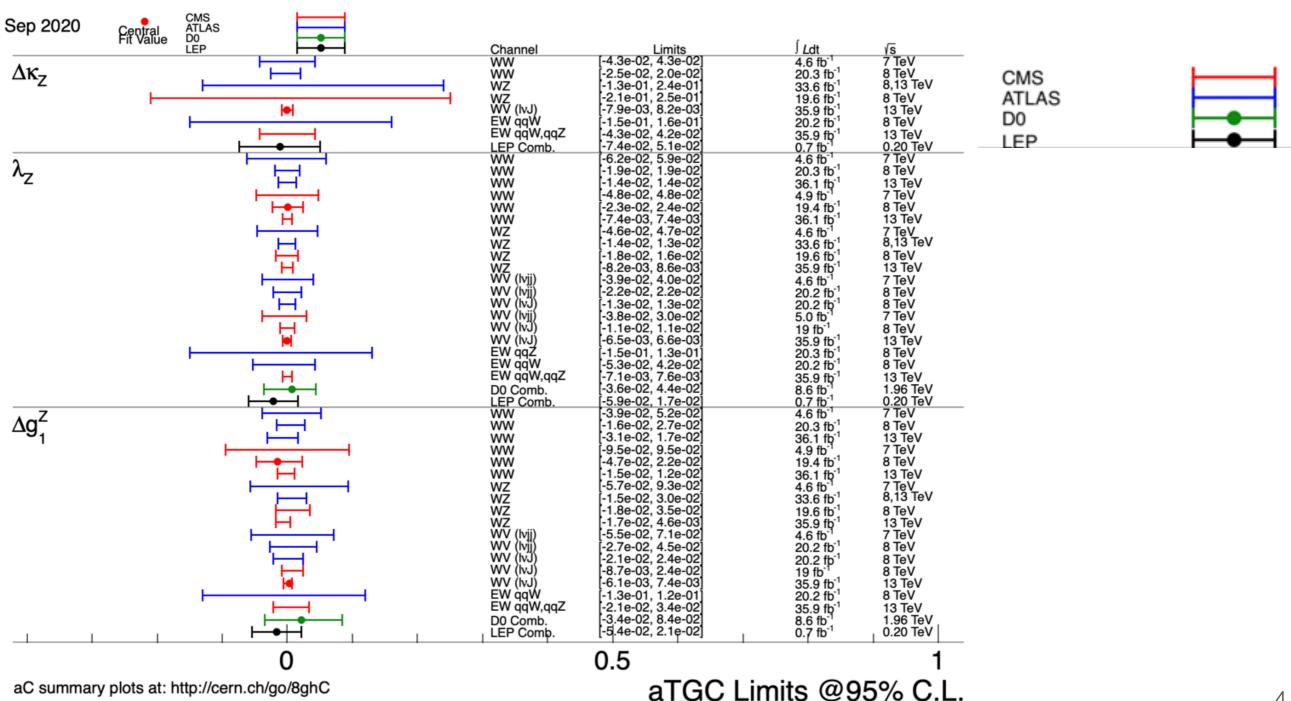
- The aim of the EFT studies is to make best use of SM measurements to constrain new physics
- EFT expansion of new physics in inverse of energy scale 1/Λ
 - Lagrangian (without L and B violating operators)



- Operator basis not unique, different conventions in use, the most used are Warsaw, HISZ and SILH
- Growth of amplitude with √s can violate unitarity, different unitarisation schemes exist
- Huge number of free parameters → some assumptions needed in order to be able to use measurements for constrains

What I will be reviewing: EFT bases/unitarisation schemes/assumptions that have been used (or have been considered) for LHC results

The anomalous Gauge Coupling Measurements

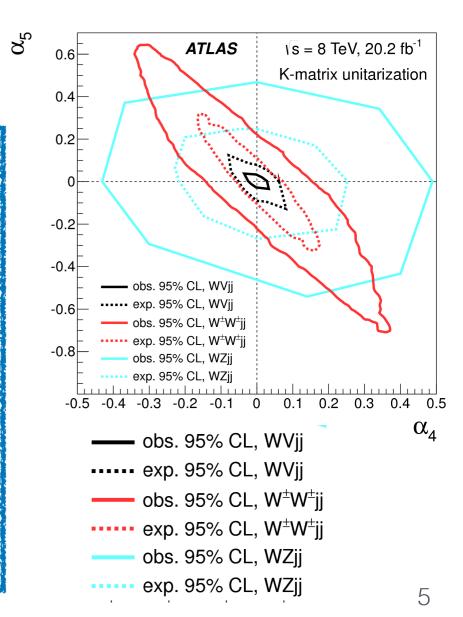

- In SM precision measurements at the LHC EFT constraints almost exclusively from anomalous gauge coupling measurements
 - Anomalous triple gauge couplings (aTGCs): Dibosons (WW, WZ, Wγ) and VBF production (Zjj, Wjj)
 - Neutral triple gauge couplings (nTGCs): ZZ and Zγ
 - Anomalous quartic gauge couplings (aQGCs): Triboson, VBS production of boson pairs, exclusive γγ→WW

■ There is so far not a common framework to get MC predictions for both dim-6 and dim-8 operators

Anomalous Gauge Coupling Measurements: The basis

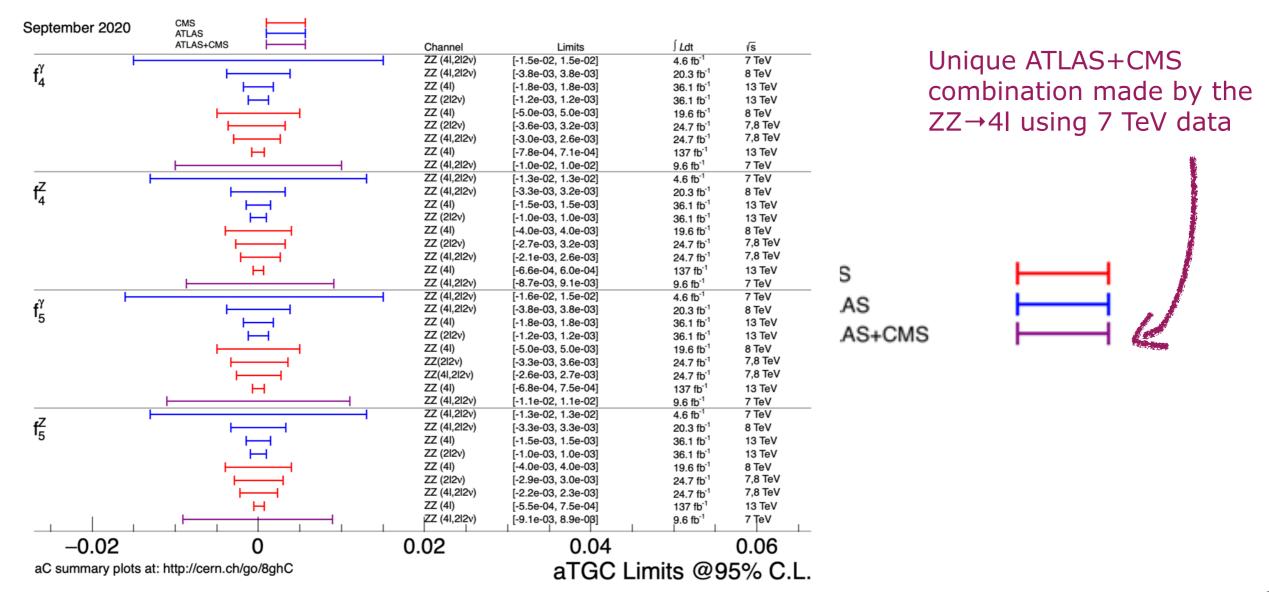
- Many un(co)rrelated constrains
 - Triple Gauge Couplings: limits on both anomalous couplings and EFT (HISZ basis commonly used for 8TeV results) → Warsaw basis becoming the standard?

Anomalous Gauge Coupling Measurements: The basis


- Many un(co)rrelated constrains
 - Triple Gauge Couplings: limits on both anomalous couplings and EFT (HISZ basis commonly used for 8TeV results) → Warsaw basis becoming the standard?
 - Quartic Gauge Couplings: anomalous couplings and Eboli model → Eboli model the standard for run-2 results

Sometimes 1-1 translation between models not easy

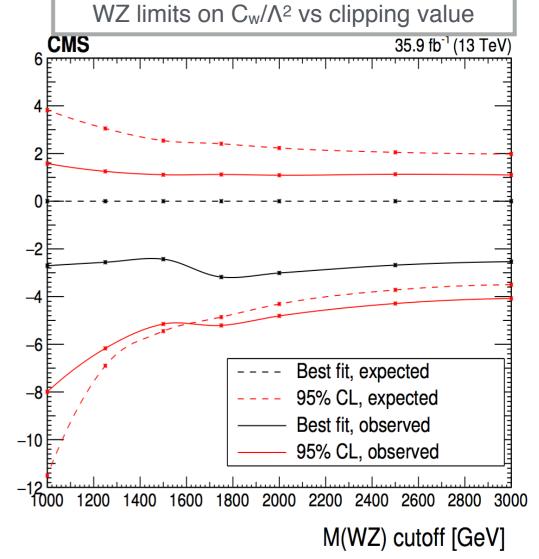
CMS-SMP-19-012


CMS EFT dim-8 parameters from ssWW @13 TeV

	Observed (W [±] W [±])	Expected (W [±] W [±])
	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]
$f_{\mathrm{T1}}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]
$f_{ m T2}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]
$f_{ m M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]
$f_{ m M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]
$f_{ m M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]
$f_{ m M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]

Anomalous Gauge Coupling Measurements: The basis

- Many un(co)rrelated constrains
 - Triple Gauge Couplings: limits on both anomalous couplings and EFT (HISZ basis commonly used for 8TeV results) → Warsaw basis becoming the standard?
 - Quartic Gauge Couplings: anomalous couplings and Eboli model → Eboli model the standard for run-2 results
 - Interesting to combine several channels sensitive to the same parameter

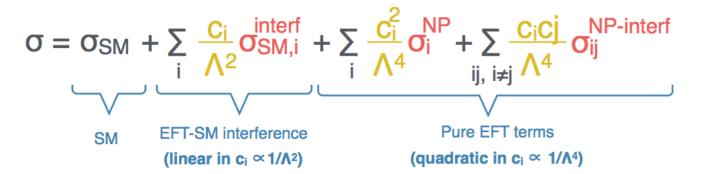


Anomalous Gauge Coupling Measurements:

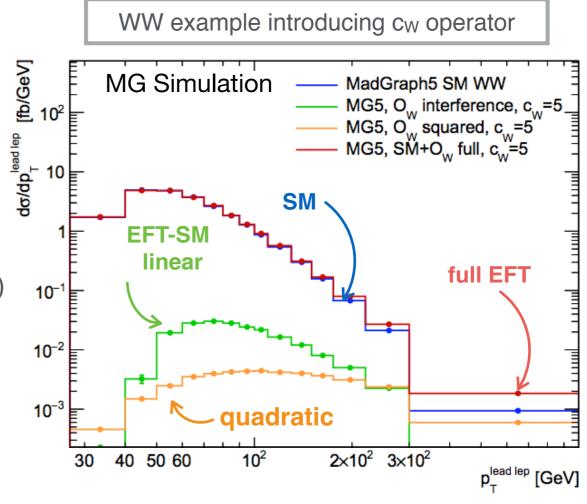
Unitarisation

With EFT the growth of amplitude with \$ can violate unitarity → o³ we need to make sure we are in a valid range of the theory

- For **aTGCs** unitarisation generally only has a mild effect
 - Run-1 analyses provided non-unitarised limits. ATLAS also used dipole form factors, with a Λ_{FF} being the largest value that guarantees unitarity (considered now over-conservative)
- For **aQGC** unitarisation can have a very large effect. Non-unitarised aQGC models often exceed unitarity bounds.
 - No consensus on the method in Run-1 (non-unitarisation, K/T-matrix, form factors and clipping scan)


For Run-II results clipping seems to be so far the preferred approach for both dim-6 and dim-8 limits

Clipping approach


- Use the EFT prediction only up to a clipping energy $\sqrt{s} = E_{clip}$ and set any contribution from this theory to 0 beyond this energy
- The clipping is done at parton level
- The SM predictions as well as the data remain untouched
- Derive limits for various E_{clip}
- Considering to use: Last data point can be use as reference point to start clipping scan

1. What kind of effects should we look for? Linear or quadratic?

- Comparison of size of terms linear ($_{\sim}$ c/ Λ^n) and quadratic ($_{\sim}$ c²/ Λ^{2n}) in EFT coefficients can be a test of convergence of EFT expansion
- The dim-6 cross section example:

- Expectation: EFT-SM interference ("linear term" ∝ 1/Λ²) leading contribution → Should we look first for the linear term?
 - → For most of 8 TeV analysis we have used variables where most of the sensitivity is actually on the quadratic term!
 - → New results from ATLAS and CMS are exploring the sensitivity to each term and the change on the limits is sizable!

1. What kind of effects should we look for? Linear or quadratic?

 \mathbb{S}

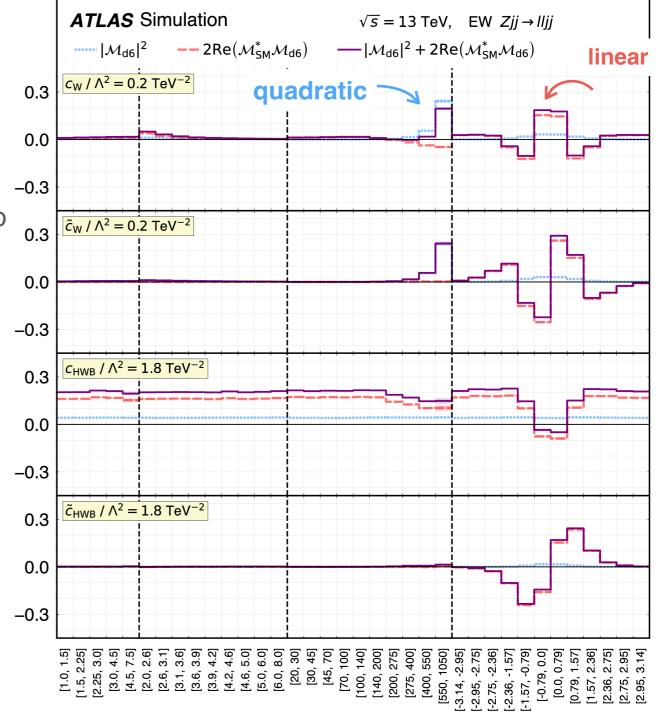
Ratio to

 $m_{\rm jj}$ [TeV]

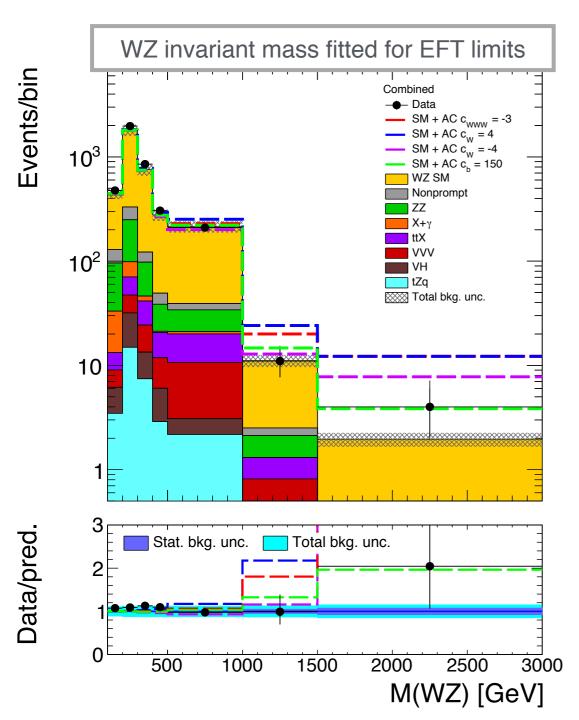
 $|\Delta y_{ij}|$

Example from ATLAS Z VBF:

Quadratic: $--- |\mathcal{M}_{d6}|^2$


EFT-SM linear: $--2Re(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$

full EFT: $-|\mathcal{M}_{d6}|^2 + 2\text{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$


- Different distributions show different sensitivities to the linear and quadratic terms
- Limits extracted using the measured EW Zjj differential cross-section as a function of the Δφ_{ij}

Wilson	Linear	95 % confidence limit	
coefficient	EFT	Expected (Asimov)	Observed
$c_{ m W}/\Lambda^2$	yes	[-0.29, 0.29]	[-0.13, 0.44]
	no	[-0.27, 0.30]	[-0.13, 0.43]
$\tilde{c}_{ m W}/\Lambda^2$	yes	[-0.12, 0.12]	[-0.10, 0.14]
	no	[-0.12, 0.12]	[-0.10, 0.14]
$c_{\mathrm{HWB}}/\Lambda^2$	yes	[-2.48, 2.48]	[-3.47, 1.50]
	no	[-3.08, 2.14]	[-3.61, 1.33]
$\tilde{c}_{\mathrm{HWB}}/\Lambda^2$	yes	[-1.15, 1.15]	[0.26, 2.55]
	no	[-1.14, 1.15]	[0.26, 2.56]

Strongest limits when pure dim-6 are excluded from the theoretical prediction!

1. What kind of effects should we look for? Linear or quadratic?

Example from CMS WZ:

Importance of the linear term studied by performing 2 sets of limits

Linear term only

Parameter	95% CI (expected) [TeV ⁻²]	95% CI (observed) $[\text{TeV}^{-2}]$
$c_{\rm W}/\Lambda^2$	[-2.3, 3.4]	[-2.2, 2.7]
$c_{\rm WWW}/\Lambda^2$	[-33.2, 28.6]	[-13.8, 41.2]
$c_{\rm b}/\Lambda^2$	[-360,300]	[-230,390]

■ Linear+Quartic terms

Parameter	95% CI (expected) $[\text{TeV}^{-2}]$	95% CI (observed) $[\text{TeV}^{-2}]$
$c_{\rm W}/\Lambda^2$	[-3.3, 2.0]	[-4.1, 1.1]
$c_{\rm WWW}/\Lambda^2$	[-1.8, 1.9]	[-2.0, 2.1]
$c_{\rm b}/\Lambda^2$	[-130, 170]	[-100, 160]

Linear vs quadratic difference not always checked → trivial to do!

Should probable keep presenting both set of results and look for observables with more discriminant power to linear terms

2. What about operators beyond dim-6?

■ The dim-6 "quadratic terms" and the dim-8 operator interference with SM contribute at the same

order $\propto 1/\Lambda^4$

Neutral Triple Gauge Couplings

- Reminder: no neutral triple gauge couplings in SM
- nTGC operators only at dim-8 in EFT expansion

$$O_{\widetilde{B}W} = i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \qquad O_{WW} = i H^{\dagger} W_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H,$$

$$O_{BW} = i H^{\dagger} B_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \qquad O_{BB} = i H^{\dagger} B_{\mu\nu} B^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H.$$

Anomalous Quartic Gauge Couplings

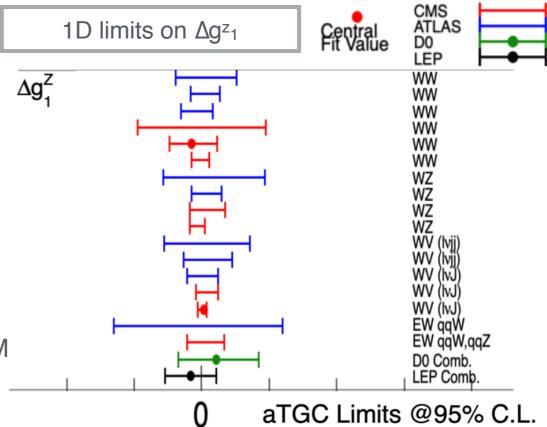
- Only at dim-8 (or higher) operators with quartic vertices but no two or three-boson couplings
- Assumption: aQGC due to dim-6 already constrained elsewhere
- Operators affect all quartic boson couplings

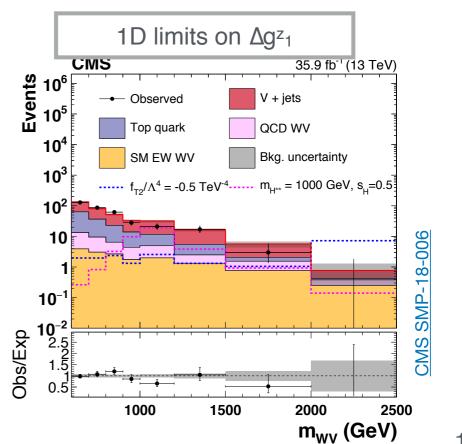
$$\mathcal{L}_{5,0-1} \propto (D_{\mu}\Phi)^4$$
, $\mathcal{L}_{M,0-7} \propto (F^{\mu\nu})^2 (D_{\mu}\Phi)^2$, $\mathcal{L}_{7,0-9} \propto (F^{\mu\nu})^4$

- The assumption so far is that dim-6 are already constrained elsewhere so we ignore them when doing dim-8 limits
 - Good assumption or not? Probably need to check it!
 - Considered to use the shape obtained best limits of dim-6 as an uncertainty on the dim-8

Anomalous Gauge Coupling Measurements:

Some assumptions


3. The fitting procedure

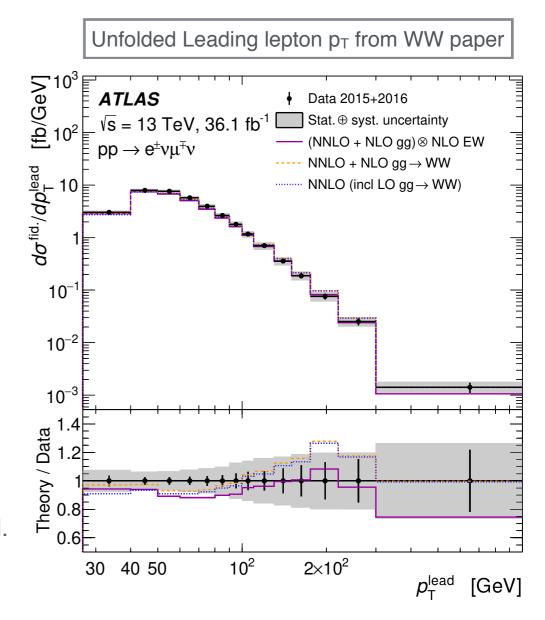

Which parameter can I fit?

- Single channels typically sensitive to more than 1 EFT parameter → statistics do not allow to fit all parameters then some assumptions need to be made:
 - 1D limits: fit 1 parameter at the time with all other set at SM
 - 2D limits: 2 free parameters and the rest fixed at SM

What should I fit?

- Two approaches have been used:
 - Fit the reconstructed level distributions: simulate the EFT effects at reco level and set limits → used for most of the Run-I results
 - Fit unfolded kinematic distributions (any way part of most of the SM results): simulate EFT in fiducial volume and set limits → becoming more common in Run-II
- Pros and cons in both approaches...

3. The fitting procedure


Using unfolded distributions

Pros

- Do not need large amount of detector simulated Monte Carlo.
- The fitting is greatly simplified.
- External members will use this procedure, easier for combinations

Cons

- Possible bias due to the unfolding procedure on the limits.
 - Reconstruction efficiencies to extrapolate from detector level to fiducial truth level might be different between BSM and SM.
- Constraining power of the unfolded result can be weaker than a fit a reconstruction level (stats in the tails)

Example of bias study for the WW publication

- Compared reconstruction efficiencies and fiducial corrections for EFT simulated sample and SM sample → no significant differences
- Limits using both reco and unfolded and get the same results to within ±1%

Summary

- At the LHC: EFT fits in EW precision measurements (so far) synonymous with anomalous gauge coupling measurements
- Many measurements are already available from Run-I and Run-II datasets (many Run-II are still under preparations) but also assumptions needed in order to produce results
- Some of the the different choices made by the collaborations in the presentation of the results were reviewed.
- Some obvious points where measurements and their interpretations can be improved
- Longer term: should move towards combinations and perform more global EFT fits and for this we need to agree in some of the assumptions we are making:)

References

- Detailed information on ATLAS and CMS analysis can be found here:
 - ATLAS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults
 - CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- Interesting presentations also from Pushing the Boundaries conference https://conference.ippp.dur.ac.uk/event/810/
- ATLAS EFT workshops https://indico.cern.ch/event/729117/