EFT interpretation of the combined measurement of Higgs production and decay

Saskia Falke on behalf of the ATLAS collaboration

December 7th, 2020

Introduction and context

- Combined STXS measurement in $H \rightarrow \gamma \gamma$, $H \rightarrow 4\ell$ and $VH, H \rightarrow bb$ (see here)
- EFT interpretation: ATLAS-CONF-2020-053
- Aiming at most general and complete possible fit that could be combined later on
- Inputs: $\sigma_{STXS} \times BR_{H \rightarrow X}$ measurements
 - most Gaussian representation
 - bin merging per decay channel

I was asked to focuss on choices, assumptions, methodology

Overview of the procedure

General EFT settings / choices

- SMEFT with Warsaw basis, dim-6 operators with $U(3)^5$ flavour symmetry, m_Z , m_W , G_f input scheme, CP-even, $\Lambda = 1 \text{ TeV}$
- MG5+Pythia8, interfaced with STXS rivet routine (modified for contact interactions)
- Generator level cuts (currently no common agreement)
 - object cuts to match STXS definitions, *dr* cuts to avoid divergencies
 - very inclusive: can be quite different from experimental acceptance

Parameter	Value	Default	Comment	
lhaid	90400	263000	sets α_s to the default	
	PDF4LHC15_nlo_30_pdfas	NNPDF30_lo_as_0130	value assumed in the PDF	
			fit ($\alpha_s = 0.118$ for 90400)	
drll, drjj,	0.05	0.4	Avoid bias in the	
drbb, drjb			selection, minimum value	
-			of 0.05 chosen to avoid	
			divergences.	
ptj, ptb	20 GeV	20 GeV	Chosen to match jet	
			selection of the Rivet	
			routine.	
ptl	0 GeV	10 GeV	Cut applied only to	
-			charged leptons.	
etal	10	2.5	Cut applied only to	
			charged leptons.	
ktdurham	30 GeV	Х	Merging scale for	
			CKKW-L scheme.	
Saskia Falke	HComl	o interpretations	07/12/2020	

- Process definition rather well defined
- Exist few (probably not very significant) diagrams which are not straight forward (at least for us experimentalists) to classify in terms of STXS production modes

ggF+bbH	generate p p $>$ h QED=1	
	add process p p $>$ h j QED=1	
	add process p p $>$ h j j QED $=1$	
	add process p p $>$ h b b \degree QED $=1$	
VBF+VHhad	generate p p $>$ h j j QCD $=$ 0	
ZHlep	generate p p $>$ h l+ l-	
	add process p p $>$ h ta $+$ ta $-$	
	add process p p $>$ h vl vl~	
	add process p p $>$ h vt vt [~]	
WHlep	generate p p $>$ h l+ vl	
	add process p p > h l- vl~	
ttH	generate p p $>$ h t t $$	
tHjb	generate p p $>$ h t b $$ j	
	add process p p $>$ h t $$ b j	
tHW	define $p = p b b^{\sim}$	
	generate p p $>$ h t w-	
	add process p p $>$ h t [~] w+	
$H \rightarrow 4\ell$	generate $h > I+ I- I+ I-$	
$H \rightarrow b\bar{b}$	generate $h > b b^{\sim}$	
$H \rightarrow \gamma \gamma$	generate $h > a$ a	
+ Additional channels (2-&3-body decays) entering total width		

EFT parametrisation

- EFT parametrisation is multiplicative correction to best-knowledge STXS and BR predictions in each bin
 - $\, \bullet \,$ assume / hope that higher order effects cancel in ratio EFT / SM
 - no additional uncertainties, except full SM uncertainty at SM-MC order taken into account
- Parametrisation of each process at its leading order:
 - ggF, $ggZ(\rightarrow \ell\ell)H$, $H \rightarrow gg$: NLO QCD with SMEFTatNLO
 - $H \rightarrow \gamma \gamma$: NLO QED from this paper
 - rest: LO with SMEFTsim
- Factorisation of production and decay (+ Higgs decays simulated at rest)
- In this step, consider all operators in each bin with interference term impact > 0.1%:
 - does not reject operators, but avoid contributions from stat. fluctuations in some bins
 - $\circ~0.1\%$ is far below uncertainty on measurement in each bin within validity regime of EFT

Power in Λ^{-2}

$$rac{\sigma_{EFT}}{\sigma_{SM}} = 1 + \sum_{i} A_i c_i + \sum_{ij} B_{ij} c_{ij}$$

2 fit scenarios considered:

• "Linear": Taylor expansion, truncation at $\frac{1}{\Lambda^2}$

$$(\sigma \times BR)_{\mathsf{EFT}} = (\sigma \times BR)_{\mathsf{SM}} \cdot \left(1 + \sum_{i} A_{i}^{\mathsf{STXS}} c_{i} + \sum_{i} (A_{i}^{H \to X} - A_{i}^{H}) \cdot c_{i}\right)$$

 "Linear + quadratic": full parametrisation, including pure BSM terms and mixed terms with higher orders

$$\sigma_{i}^{H \to X} = \sigma_{i} \cdot \mathcal{BR}_{H \to X} = \left(\sigma_{\mathsf{SM}}^{i} + \sigma_{\mathsf{int}}^{i} + \sigma_{\mathsf{BSM}}^{i}\right) \cdot \frac{\Gamma_{\mathsf{SM}}^{H \to X} + \Gamma_{\mathsf{int}}^{H \to X} + \Gamma_{\mathsf{BSM}}^{H \to X}}{\Gamma_{\mathsf{SM}}^{H} + \Gamma_{\mathsf{int}}^{H} + \Gamma_{\mathsf{BSM}}^{H}}$$

Only dimension 6 operators are considered!

Saskia Falke

Sensitivity study

- Fit with all Wilson coefficients does not converge and correlations are making results somewhat arbitrary
- Study sensitivity from covariance matrix: set only parameters to 0 to which there is no sensitivity
- Build full EFT covariance matrix fron STXS×BR covariance matrix, propagate linear EFT parametrisation:

$$C_{\mathsf{EFT}}^{-1} = P^T C_{\mathsf{STXS}}^{-1} P$$

- Eigenvector decomposition gives hints on sensitive directions: large eigenvalues ↔ good sensitivity
- Do not use full eigenvector decomposition: difficult to interpret intuitively and validate results
 - group only operators with similar impact on specific physics processes
 - $\circ\,$ no aim to reduce "experimental" correlations (e.g. between ggF and $H\to\gamma\gamma)$

Parameter rotations

Parameter rotations

- Group parameter with similar impact in specific processes
- Eigenvector of sub-covariance matrix with these operators
- Keep the ones with "large" eigenvalue, set the others to 0
- Will be validated later on!
- Set operators impacting overall normalisation to zero; in future: would compute impact on fitted directions

Parameter		Definition	Eigenvalue	Fit Para- meter	_
$c_{Hq}^{(3)}$		$c_{Hq}^{\scriptscriptstyle (3)}$	1900	~	
В	1	$-0.27 c_{HW} - 0.84 c_{HB} + 0.47 c_{HWB} - 0.02 c_{uW} - 0.05 c_{uB}$	245000	1	
n' Mn'a	2	$-0.96c_{HW} + 0.19c_{HB} - 0.20c_{HWB} + 0.02c_{uB} \\$	33	1	Η
aan, aw	3	$-0.08 c_{BW} + 0.50 c_{BB} + 0.86 c_{HWB} + 0.07 c_{HDD} + 0.03 c_{uW} + 0.06 c_{uB}$	4	1	/BF/
ran,	4	$0.03c_{HWB} - 0.85c_{HDD} + 0.32c_{uW} + 0.43c_{uB}$	0.017		<u>د</u>
c _{mv}	5	$-0.01 c_{BW} + 0.07 c_{BB} + 0.05 c_{HWB} - 0.44 c_{HDD} - 0.86 c_{uW} - 0.23 c_{uB}$	0.0077		ק ל
	6	$-0.01 c_{H\!W} + 0.06 c_{H\!B} + 0.04 c_{HWB} - 0.29 c_{HDD} + 0.39 c_{uW} - 0.87 c_{uB}$	0.0025		Ξ
	1	$+0.999c_{HG} + 0.038c_{uG}$	176000	1	
$c_{HG, uG, uH, top}^{[i]}$	2	$\begin{array}{l} -0.03 c_{BG} + 0.73 c_{uG} - 0.03 c_{qq}^{(i)} - 0.23 c_{qq} - 0.05 c_{qq}^{(i)} - 0.54 c_{qq}^{(i)} - \\ 0.02 c_{uu} - 0.24 c_{uu}^{(i)} - 0.04 c_{ud}^{(i)} - 0.01 c_{qu}^{(i)} - 0.15 c_{qu}^{(i)} - 0.04 c_{qd}^{(i)} - \\ 0.18 c_{G} + 0.06 c_{uH} \end{array}$	20	1	
	3	$\begin{array}{l} -0.03 c_{BG} + 0.67 c_{uG} + 0.04 c_{qq}^{(i)} + 0.25 c_{qq} + 0.05 c_{qq}^{(i)} + 0.55 c_{qq}^{(i)} + \\ 0.02 c_{uu} + 0.26 c_{uu}^{(i)} + 0.03 c_{ud}^{(i)} + 0.01 c_{qu}^{(i)} + 0.16 c_{qu}^{(i)} + 0.03 c_{qd}^{(i)} + \\ 0.29 c_G + 0.1 c_{uH} \end{array}$	1.3	1	ttH
	4	$+0.11 c_{uG} + 0.01 c_{qq} - 0.018 c_{qq}^{\scriptscriptstyle (3)} + 0.029 c_{qq}^{\scriptscriptstyle (3)} + 0.012 c_{uu}^{\scriptscriptstyle (1)} - 0.993 c_{uH}$	0.14		ggF,
	5	$+0.02c_{qq}-1.0c_{qq}^{\scriptscriptstyle (3)}+0.06c_{qq}^{\scriptscriptstyle (3)}+0.03c_{uu}^{\scriptscriptstyle (1)}+0.02c_{qu}^{\scriptscriptstyle (3)}+0.02c_{uH}$	0.02		
	6	$\begin{array}{l} +0.07 c_{uG} - 0.02 c_{qq}^{\scriptscriptstyle (1)} + 0.07 c_{qq} + 0.03 c_{qq}^{\scriptscriptstyle (3)} + 0.32 c_{qq}^{\scriptscriptstyle (3)} + 0.06 c_{uu}^{\scriptscriptstyle (3)} + \\ 0.04 c_{ud}^{\scriptscriptstyle (6)} + 0.08 c_{qu}^{\scriptscriptstyle (6)} + 0.04 c_{qd}^{\scriptscriptstyle (6)} - 0.94 c_G + 0.02 c_{uH} \end{array}$	0.0092		
$c^{[1]}_{Hl^{(1)},He}$		$+0.78c^{(1)}_{Hl} - 0.62c_{He}$	2.6	۷.,	- al
$c^{[2]}_{Hl^{(1)},He}$		$+0.62c^{(1)}_{Hl}+0.78c_{He}$	0.056	*	_
$c^{[1]}_{Hu,Hd,Hq^{(1)}}$		$-0.87 c_{Hu} + 0.26 c_{Hd} + 0.42 c_{Hq}^{\scriptscriptstyle (i)}$	59	1	
$c^{[2]}_{Hu,Hd,Hq^{(1)}}$		$+0.41 c_{Hu}-0.09 c_{Hd}+0.91 c_{Hq}^{\scriptscriptstyle (i)}$	0.10	14	
$c^{[3]}_{Hu,Hd,Hq^{(1)}}$		$-0.28 c_{Hu} - 0.96 c_{Hd} + 0.03 c_{Hq}^{\scriptscriptstyle ({\rm I})}$	0.0018	1	_
$c^{[1]}_{Hl^{(3)},ll'}$		$0.87 c_{Hl}^{\scriptscriptstyle (3)} - 0.50 c_{ll}^{\prime}$	27	~	
$c^{[2]}_{Hl^{(3)},ll'}$		$0.50c_{Hl}^{\scriptscriptstyle (3)} + 0.87c_{ll}^{\prime}$	0.33	 	in in
				r'yer	

Parameter rotations

Choice of fitted directions

- 10 directions fitted simultaneously
- Used for both fit scenarios (choice of sensitive directions not re-optimised including quadratic terms)

EFT parametrisation of acceptance

No definition of decay-side binning in STXS:

- Experimental requirements on m_{12} and m_{34} to target $H \rightarrow ZZ^*$ decay
- Wilson coefficients might cause diff. kinematics or contact terms with Higgs, Z and leptons

Use acceptance parametrisation from Eur.Phys.JC 80 (2020) 957:

- ad-hoc parametrisation with 3D Lorenzian
- includes c_{HW}, c_{HB}, c_{HWB}: neglect other operators
- multiplicative factor: non-linear component in the fit, even for "linear" model

Fit results

- Excellent sensitivity from simultaneous fit to 10 POIs
- No reduction of "experimental" correlations

About correlations (linear model)

Correlations should be linear to keep generality of results when quoting central values and covariance matrix

- variation of profiled directions in likelihood scans show mostly linear correlations
- exception: parameters relevant mostly in $H \rightarrow 4\ell$ and correlated with operators included in acceptance correction (this is not a fundamental problem and can be fixed for next round)

Only valid in linear model; more difficult to handle including quadratic terms!

Neglected directions

- Setting parameters to SM (zero) can be strong model assumption
- To keep generality of results, show that impact on fitted directions is negligible within EFT validity range

Impact of quadratic terms

Non-negligible impact from quadratic terms; should study dim-8 terms...

Saskia Falke

Summary and outlook

- EFT interpretation of combined STXS measurements in ATLAS (including $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, $H \rightarrow ZZ^* \rightarrow 4\ell$)
- Good sensitivity to large set of directions; need to define criteria to chose these directions as not all operators can be fitted separately
- Still learning, a common approach would help to harmonise between experiments and analyses
- Aim to perform general fit, minimising assumptions; improvements / studies still needed:
 - symmetry assumptions, truncations
 - simulation order, SMEFT / SM k-factors
- More studies needed also on "global" aspects in the future on:
 - acceptance effects in production side: analyses use MVA techniques in variables not used in STXS definition
 - theory uncertainties from higher order, higher dimensions etc.

Backup

Full eigenvector decomposition

No.	Eigenvalue	Eigenvector
1	299310	$-0.02c_W + 0.55c_{HG} - 0.23c_{HW} - 0.70c_{HB} + 0.39c_{HWB} + 0.02c_{uG} - 0.02c_{uW} - 0.04c_{uB}$
2	121830	$-0.83c_{HG} - 0.15c_{HW} - 0.47c_{HB} + 0.26c_{HWB} - 0.03c_{uG} - 0.03c_{uB}$
3	1960	$0.10c_{HW} + 0.03c_{HWB} - 0.02c_{Hl}^{(3)} - 0.05c_{Hg}^{(1)} + 0.99c_{Hg}^{(3)} + 0.09c_{Hu} - 0.03c_{Hd} + 0.02c_{ll}^{\prime}$
4	38	$+0.03c_{H\Box} + 0.02c_{HDD} + 0.09c_{HB} + 0.15c_{HWB} + 0.02c_{uH} + 0.08c_{uG} - 0.02c_{HI}^{(1)} - 0.06c_{HI}^{(3)} - 0.06c_$
		$0.02c_{He} - 0.41c_{Hg}^{(1)} - 0.11c_{Hg}^{(3)} + 0.84c_{Hu} - 0.26c_{Hd} + 0.04c_{U}^{\prime}$
5	19	$+0.17 c_G + 0.07 c_{H\square} + 0.02 c_{HG} - 0.19 c_{HW} + 0.10 c_{HB} + 0.06 c_{HWB} - 0.08 c_{uH} + 0.06 c_{dH} - 0.69 c_{uG} - 0.09 c_{uH} + 0.00 c_{dH} - 0.00 c_{uH} + 0$
		$0.09c_{Hl}^{\scriptscriptstyle (1)} - 0.13c_{Hl}^{\scriptscriptstyle (3)} - 0.07c_{He} - 0.02c_{Hq}^{\scriptscriptstyle (1)} + 0.03c_{Hu} + 0.10c_{ll}' + 0.03c_{qq}^{\scriptscriptstyle (1)} + 0.22c_{qq} + 0.05c_{qq}^{\scriptscriptstyle (3)} - 0.05c_{qq}^{\scriptscriptstyle (3)} + 0.03c_{Hu} + 0.03c_{Hu} + 0.00c_{ll}' + 0.00c_{qq}' + 0.00c$
		$0.52c_{qq}^{(31)} + 0.02c_{uu} + 0.23c_{uu}^{(1)} + 0.03c_{ud}^{(8)} + 0.15c_{qu}^{(8)} + 0.03c_{ad}^{(8)}$
6	10	$-0.20 c_{H\square} - 0.02 c_{HDD} - 0.57 c_{HW} - 0.34 c_{HWB} - 0.02 c_{uH} - 0.08 c_{dH} - 0.04 c_{uG} - 0.13 c_{Hl}^{^{(1)}} + 0.54 c_{Hl}^{^{(3)}} - 0.02 c_{HDD} - 0.02 c_{HD} - 0$
		$0.13c_{He} - 0.10c_{Hq}^{(1)} + 0.08c_{Hq}^{(3)} + 0.08c_{Hu} - 0.02c_{Hd} - 0.40c_{ll}' + 0.02c_{qq} + 0.04c_{qq}^{(3)} + 0.02c_{uu}' - 0.02c_{uu}' - 0.02c_{uu}' - 0.04c_{uu}' - 0.02c_{uu}' - 0.04c_{uu}' - 0.0$
7	5.9	$+0.08 c_G - 0.07 c_{H\square} - 0.03 c_{HDD} + 0.73 c_{HW} - 0.23 c_{HB} - 0.11 c_{dH} - 0.13 c_{uG} - 0.02 c_{uW} - 0.03 c_{uB} - 0.01 c_{dH} - 0.00 c_{uH} - $
		$0.15c_{Hl}^{(1)} + 0.44c_{Hl}^{(3)} + 0.10c_{He} - 0.07c_{Hq}^{(3)} + 0.08c_{Hu} - 0.02c_{Hd} - 0.25c_{ll}' + 0.09c_{qq} + 0.02c_{qq}^{(3)} + 0.02c_{qq}' $
		$0.22c_{qq}^{\scriptscriptstyle (31)} + 0.10c_{uu}^{\scriptscriptstyle (1)} + 0.06c_{qu}^{\scriptscriptstyle (8)}$
8	1.1	$-0.29 c_G + 0.04 c_{H\square} - 0.02 c_{HDD} + 0.03 c_{HG} + 0.08 c_{HW} - 0.02 c_{HB} - 0.10 c_{uH} - 0.68 c_{uG} + 0.02 c_{HI}^{\scriptscriptstyle (1)} - 0.02 c_{HD} - 0.02 c_{HDD} + 0.03 c_{HG} + 0.00 c_{HW} - 0.02 c_{HB} - 0.00 c_{uH} - 0.00 c$
		$0.08c_{Hl}^{\scriptscriptstyle (3)} - 0.01c_{He} - 0.02c_{Hq}^{\scriptscriptstyle (1)} - 0.01c_{Hq}^{\scriptscriptstyle (3)} + 0.04c_{Hu} - 0.02c_{Hd} - 0.03c_{ll}' - 0.04c_{qq}^{\scriptscriptstyle (1)} - 0.24c_{qq} - 0.04c_{Hu} - 0.02c_{Hd} - 0.03c_{ll}' - 0.04c_{qq} - 0.04c_{q$
		$0.04c_{qq}^{\scriptscriptstyle (3)} - 0.52c_{qq}^{\scriptscriptstyle (3)} - 0.02c_{uu} - 0.25c_{uu}^{\scriptscriptstyle (1)} - 0.03c_{ud}^{\scriptscriptstyle (8)} - 0.01c_{qu}^{\scriptscriptstyle (1)} - 0.15c_{qu}^{\scriptscriptstyle (8)} - 0.03c_{qd}^{\scriptscriptstyle (8)}$
9	0.30	$+0.03 c_G - 0.01 c_W + 0.06 c_{H\square} - 0.12 c_{HDD} + 0.09 c_{HW} - 0.41 c_{HB} - 0.70 c_{HWB} + 0.06 c_{uH} - 0.11 c_{dH} - 0.00 c_{H\square} - 0.0$
		$0.05 c_{uG} - 0.01 c_{uW} - 0.02 c_{uB} - 0.37 c_{Hl}^{\scriptscriptstyle (3)} + 0.16 c_{He} - 0.36 c_{Hq}^{\scriptscriptstyle (1)} - 0.02 c_{Hq}^{\scriptscriptstyle (3)} - 0.03 c_{Hu} + 0.01 c_{Hd} + 0.10 c_{Hd}^{\scriptscriptstyle (2)} + 0.00 c_{Hd}^{\scriptscriptstyle (3)} - 0.$
10	0.16	$+0.02 c_G - 0.02 c_W + 0.27 c_{H\square} - 0.04 c_{HDD} - 0.09 c_{HW} + 0.09 c_{HB} + 0.09 c_{HWB} + 0.01 c_{eH} + 0.08 c_{uH} - 0.00 c_{eH} + 0.$
		$0.52 c_{dH} - 0.07 c_{uG} - 0.01 c_{uW} - 0.04 c_{uB} - 0.58 c_{Hl}^{\scriptscriptstyle (1)} - 0.26 c_{Hl}^{\scriptscriptstyle (3)} + 0.29 c_{He} + 0.31 c_{Hq}^{\scriptscriptstyle (1)} + 0.10 c_{Hu} - 0.01 c_{Hu} - 0.00 c_{Hu} - 0.00$
		$0.12c_{ll}' - 0.04c_{qq}^{\scriptscriptstyle (3)}$
11	0.036	$+0.22 c_G - 0.56 c_{H\square} + 0.19 c_{HDD} + 0.01 c_{HG} + 0.03 c_{HW} + 0.03 c_{HB} + 0.07 c_{HWB} - 0.02 c_{eH} - 0.02 c_{eH} + 0.00 c_{HDD} + 0.01 c_{HG} + 0.00 c_{HW} + 0.00 c_{HB} + 0.00 c_{HW} +$
		$0.70c_{uH} + 0.09c_{dH} - 0.16c_{uG} + 0.04c_{uW} - 0.01c_{uB} - 0.06c_{Hl}^{\scriptscriptstyle (l)} - 0.18c_{Hl}^{\scriptscriptstyle (3)} + 0.09c_{He} + 0.03c_{Hq}^{\scriptscriptstyle (l)} - 0.01c_{uB} - 0.06c_{Hl}^{\scriptscriptstyle (l)} - 0.01c_{uB} - 0.00c_{Hl}^{\scriptscriptstyle (2)} - 0.00c_{Hl}^{\scriptscriptstyle (3)} - 0.00c_{H$
		$0.04 c_{Hd} - 0.07 c_{ll}' + 0.01 c_{qq}^{\scriptscriptstyle (1)} - 0.01 c_{qq} - 0.10 c_{qq}^{\scriptscriptstyle (3)} - 0.09 c_{qq}^{\scriptscriptstyle (31)} - 0.02 c_{uu}^{\scriptscriptstyle (1)} - 0.01 c_{ud}^{\scriptscriptstyle (8)} - 0.02 c_{qu}^{\scriptscriptstyle (8)} - 0.01 c_{qu}^{\scriptscriptstyle (8)} $
12	0.023	$-0.05 c_G + 0.09 c_{H\square} - 0.01 c_{HDD} - 0.01 c_{HB} - 0.02 c_{uH} + 0.01 c_{uG} + 0.37 c_{uW} + 0.03 c_{Hl}^{\scriptscriptstyle (1)} + 0.05 c_{Hl}^{\scriptscriptstyle (3)} - 0.01 c_{HDD} - 0.01 c_{HB} - 0.02 c_{uH} + 0.01 c_{uG} + 0.37 c_{uW} + 0.03 c_{Hl}^{\scriptscriptstyle (1)} + 0.05 c_{Hl}^{\scriptscriptstyle (3)} - 0.01 c_{HD} - 0.01 c_{HD$
aski	- Falke	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n an li		

S

020 17 / 15