

EFT in VBFNLO

Dieter Zeppenfeld Area 2 meeting: predictions and tools

KIT Center Elementary Particle and Astroparticle Physics - KCETA

www.kit.edu

VBFNLO is a collection of many mixed QCD/EW processes with NLO QCD corrections

BSM effects included in many processes

…. and dimension-8 EFT operators for VBS

Example: tensor structure of HVV coupling

Most general HVV vertex $T^{\mu\nu}(q_1, q_2)$

Physical interpretation of terms:

SM Higgs $\mathcal{L}_I \sim HV_\mu V^\mu \longrightarrow a_1$

loop induced couplings for neutral scalar

CP even $\mathcal{L}_{eff} \sim HV_{\mu\nu}V^{\mu\nu} \longrightarrow a_2$ CP odd $\mathcal{L}_{eff} \sim HV_{\mu\nu} \tilde{V}^{\mu\nu} \longrightarrow a_3$

$$
T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}
$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Connection to EFT description

We need model of the underlying UV physics to determine the form factors $a_i(q_1, q_2)$ Approximate its low-energy effects by an effective Lagrangian

$$
\mathcal{L}_{\text{eff}} = \frac{f_{WW}}{\Lambda^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{\phi}}{\Lambda^2} \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) \left(D_{\mu} \phi \right)^{\dagger} D^{\mu} \phi + \dots + \sum_{i} \frac{f_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \dots
$$

Gives leading terms for form factors, e.g. for hWW coupling

$$
a_1 = \frac{2m_W^2}{v} \left(1 + \frac{f_\phi}{\Lambda^2} \frac{v^2}{2} \right) + \sum_i c_i^{(1)} \frac{f_i^{(8)}}{\Lambda^4} v^2 q^2 + \cdots
$$

\n
$$
a_2 = c^{(2)} \frac{f_{WW}}{\Lambda^2} v + \sum_i c_i^{(2)} \frac{f_i^{(8)}}{\Lambda^4} v q^2 + \cdots
$$

\n
$$
a_3 = c^{(3)} \frac{\tilde{f}_{WW}}{\Lambda^2} v + \sum_i c_i^{(3)} \frac{\tilde{f}_i^{(8)}}{\Lambda^4} v q^2 + \cdots
$$

Describe same physics (for a particular vertex) by taking some minimal set of effective Lagrangian coefficients f_i as form factors

Implementation in VBFNLO

Start from effective Lagrangians

$$
\mathcal{L} = \frac{g_{5e}^{HZZ}}{2\Lambda_{5}} HZ_{\mu\nu}Z^{\mu\nu} + \frac{g_{5o}^{HZZ}}{2\Lambda_{5}} H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \frac{g_{5e}^{HWW}}{\Lambda_{5}} HW_{\mu\nu}^{+}W_{\mu}^{\mu\nu} + \frac{g_{5o}^{HWW}}{\Lambda_{5}} H\tilde{W}_{\mu\nu}^{+}W_{\mu}^{\mu\nu} + \frac{g_{5e}^{HZ\gamma}}{\Lambda_{5}} HZ_{\mu\nu}A^{\mu\nu} + \frac{g_{5o}^{HZ\gamma}}{\Lambda_{5}} H\tilde{Z}_{\mu\nu}A^{\mu\nu} + \frac{g_{5e}^{H\gamma\gamma}}{2\Lambda_{5}} HA_{\mu\nu}A^{\mu\nu} + \frac{g_{5o}^{H\gamma\gamma}}{2\Lambda_{5}} H\tilde{A}_{\mu\nu}A^{\mu\nu}
$$

or, alternatively,

$$
\mathcal{L}_{eff} = \frac{f_{WW}}{\Lambda_6^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{BB}}{\Lambda_6^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi + \text{CP-odd part} + \cdots
$$

Implementation in VBFNLO

Start from effective Lagrangians (set PARAMETR1=.true. in anom_HVV.dat)

$$
\mathcal{L} = \frac{g_{5e}^{HZZ}}{2\Lambda_{5}} HZ_{\mu\nu}Z^{\mu\nu} + \frac{g_{5o}^{HZZ}}{2\Lambda_{5}} H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \frac{g_{5e}^{HWW}}{\Lambda_{5}} HW_{\mu\nu}^{+}W_{-}^{\mu\nu} + \frac{g_{5o}^{HWW}}{\Lambda_{5}} H\tilde{W}_{\mu\nu}^{+}W_{-}^{\mu\nu} + \\ \frac{g_{5e}^{HZ\gamma}}{\Lambda_{5}} HZ_{\mu\nu}A^{\mu\nu} + \frac{g_{5o}^{HZ\gamma}}{\Lambda_{5}} H\tilde{Z}_{\mu\nu}A^{\mu\nu} + \frac{g_{5e}^{H\gamma\gamma}}{2\Lambda_{5}} HA_{\mu\nu}A^{\mu\nu} + \frac{g_{5o}^{H\gamma\gamma}}{2\Lambda_{5}} H\tilde{A}_{\mu\nu}A^{\mu\nu}
$$

or, alternatively, (set PARAMETR3=.true. in anom_HVV.dat)

$$
\mathcal{L}_{eff} = \frac{f_{WW}}{\Lambda_6^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{BB}}{\Lambda_6^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi + \text{CP-odd part} + \cdots
$$

see VBFNLO manual for details on how to set the anomalous coupling choices Remember to choose form factors in anom_HVV.dat

$$
F_1 = \frac{M^2}{q_1^2 - M^2} \frac{M^2}{q_2^2 - M^2}
$$
 or
$$
F_2 = -2 M^2 C_0 (q_1^2, q_2^2, (q_1 + q_2)^2, M^2)
$$

EFT operators for HVV and VVV couplings

VBFNLO provides only for a restricted set of dimension 6 operators

$$
\mathcal{O}_W = (D_\mu \phi^\dagger) \widehat{W}^{\mu\nu} (D_\nu \phi)
$$

\n
$$
\mathcal{O}_B = (D_\mu \phi^\dagger) \widehat{B}^{\mu\nu} (D_\nu \phi)
$$

\n
$$
\mathcal{O}_{WW} = \phi^\dagger \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \phi
$$

\n
$$
\mathcal{O}_{BB} = \phi^\dagger \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \phi,
$$

\n
$$
\mathcal{O}_{WB} = \phi^\dagger \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \phi,
$$

\n
$$
\mathcal{O}_{WWW} = \text{Tr} (\widehat{W}^\mu_{\ \nu} \widehat{W}^\nu_{\ \rho} \widehat{W}^\rho_{\ \mu})
$$

Parameters are set in anom_HVV.dat and anomV.dat which also provides switch to lambda, kappa, g_1 notation

$$
\mathcal{L}_{WWZ} = -ie \cot \theta_w \left[g_1^Z \left(W_{\mu\nu}^\dagger W^\mu Z^\nu - W_\mu^\dagger Z_\nu W^{\mu\nu} \right) + \kappa_Z W_\mu^\dagger W_\nu Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W_{\sigma\mu}^\dagger W_\nu^\mu Z^{\nu\sigma} \right]
$$

See manual for details: https://www.itp.kit.edu/vbfnlo/wiki/doku.php

For aQGC: full set of dimension 8 operators (Eboli et al.)

- Distinguish by dominant set of vector boson helicities
- Longitudinal operators: derivatives of Higgs doublet field

$$
\mathcal{O}_{S_0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]
$$

$$
\mathcal{O}_{S_1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]
$$

$$
\mathcal{O}_{S_2} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right]
$$

Wilson coefficients for these operators and analogous transverse dimension-8 operators can be set in anomV.dat

Field strength transverse polarizations

$$
\mathcal{O}_{T_0} = \text{Tr}\left[W_{\mu\nu}W^{\mu\nu}\right] \times \text{Tr}\left[W_{\alpha\beta}W^{\alpha\beta}\right]
$$

\n
$$
\mathcal{O}_{T_1} = \text{Tr}\left[W_{\alpha\nu}W^{\mu\beta}\right] \times \text{Tr}\left[W_{\mu\beta}W^{\alpha\nu}\right]
$$

\n
$$
\mathcal{O}_{T_2} = \text{Tr}\left[W_{\alpha\mu}W^{\mu\beta}\right] \times \text{Tr}\left[W_{\beta\nu}W^{\nu\alpha}\right]
$$

\n
$$
\mathcal{O}_{T_5} = \text{Tr}\left[W_{\mu\nu}W^{\mu\nu}\right] \times B_{\alpha\beta}B^{\alpha\beta},
$$

\n
$$
\mathcal{O}_{T_6} = \text{Tr}\left[W_{\alpha\nu}W^{\mu\beta}\right] \times B_{\mu\beta}B^{\alpha\nu},
$$

\n
$$
\mathcal{O}_{T_7} = \text{Tr}\left[W_{\alpha\mu}W^{\mu\beta}\right] \times B_{\beta\nu}B^{\nu\alpha},
$$

\n
$$
\mathcal{O}_{T_8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta},
$$

\n
$$
\mathcal{O}_{T_9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}.
$$

\n
$$
\mathcal{O}_{T_3} = \text{Tr}\left(\hat{W}^{\mu\nu}\hat{W}^{\alpha\beta}\right)\text{Tr}\left(\hat{W}_{\nu\alpha}\hat{W}_{\beta\mu}\right)
$$

\n
$$
\mathcal{O}_{T_8} = \text{Tr}\left(\hat{W}^{\mu\nu}\hat{W}^{\alpha\beta}\right)\hat{B}_{\nu\alpha}\hat{B}_{\beta\mu}
$$

Transverse operators Mixed: transverse-longitudinal

$$
\mathcal{O}_{M_0} = \text{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[\left(D_\beta \Phi \right)^\dagger D^\beta \Phi \right],
$$

\n
$$
\mathcal{O}_{M_1} = \text{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \times \left[\left(D_\beta \Phi \right)^\dagger D^\mu \Phi \right],
$$

\n
$$
\mathcal{O}_{M_2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_\beta \Phi \right)^\dagger D^\beta \Phi \right],
$$

\n
$$
\mathcal{O}_{M_3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_\beta \Phi \right)^\dagger D^\mu \Phi \right],
$$

\n
$$
\mathcal{O}_{M_4} = \left[\left(D_\mu \Phi \right)^\dagger W_{\beta\nu} D^\mu \Phi \right] \times B^{\beta\nu},
$$

\n
$$
\mathcal{O}_{M_5} = \left[\left(D_\mu \Phi \right)^\dagger W_{\beta\nu} D^\nu \Phi \right] \times B^{\beta\mu},
$$

\n
$$
\mathcal{O}_{M_7} = \left[\left(D_\mu \Phi \right)^\dagger W_{\beta\nu} W^{\beta\mu} D^\nu \Phi \right].
$$

 \leftarrow To be added in VBFNLO 3.0 release

 $VV \rightarrow W^{+}W^{-}$ with dimension 8 operators

Effect of constant
$$
T_1 = \frac{f_{M,1}}{\Lambda^4}
$$
 on $pp \rightarrow W^+ W^- j j \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu jj$

- Huge increase in cross section at high m_{WW} is completely unphysical
- Need form factor for analysis or some other unitarization procedure

Unitarization of tree level amplitude: $T_0 \rightarrow T_u$

K-matrix (also called T-matrix) procedure for on-shell hermitian T_0

$$
\mathbf{T}_L = \left(1 - \frac{\mathrm{i}}{2}\mathbf{T}_0^{\dagger}\right)^{-1} \frac{1}{2}\left(\mathbf{T}_0 + \mathbf{T}_0^{\dagger}\right) = \left(1 + \frac{1}{4}\mathbf{T}_0\mathbf{T}_0\right)^{-1}\left(\mathbf{T}_0 + \frac{\mathrm{i}}{2}\mathbf{T}_0\mathbf{T}_0\right)
$$

General virtualities $\rightarrow T_0$ not normal for off-shell VV \rightarrow VV Must distinguish \mathbf{A} Z

$$
\mathbf{A}_{t \leftarrow s} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(q_3, q_4; q_1, q_2)
$$

$$
\mathbf{A}_{s \leftarrow t} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(k_3, k_4; k_1, k_2)
$$

$$
\mathbf{A}_{t \leftarrow t} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(q_3, q_4; k_1, k_2)
$$

Use
$$
\mathbf{A}_{t \leftarrow s}^{\text{unit}} = \left(1 + \frac{1}{4} \mathbf{A}_{t \leftarrow s} \mathbf{A}_{s \leftarrow t}\right)^{-1} \left(\mathbf{A}_{t \leftarrow s} + \frac{1}{2} \mathbf{A}_{t \leftarrow t} \mathbf{A}_{t \leftarrow s}\right)\right)
$$

Alignment problems avoided by using largest eigenvalue of denominator

$$
\mathbf{A}_{t \leftarrow s}^{\text{unit}} = \left(1 + \frac{1}{4}a_{\text{max}}^2\right)^{-1} \left(\mathbf{A}_{t \leftarrow s} + \frac{1}{2}\mathbf{A}_{t \leftarrow t}\mathbf{A}_{t \leftarrow s}\right)
$$

Defines T_u model

Tu model unitarization now implemented for all VBS processes in VBFNLO

 $qq \rightarrow W^+ Zjj \rightarrow l^+l^-l^+\nu_l jj,$

Will be made available in new release 3.0 of VBFNLO in 2021

THANKS!

NLO corrections and their implementation in VBFNLO have been a collaborative effort! Thanks to my colleagues

V. Hankele, B. Jäger, M. Worek, J. Frank, S. Palmer, G. Perez, H. Rzehak, F. Schissler, F. Campanario, M. Rauch, C. Oleari, K. Arnold, J. Baglio, J. Bellm, G. Bozzi, A. Engemann, C. Englert, B. Feigl, T. Figy, A. Jesser, M. Kerner, G.Klämke, M. Kubocz, M. Löschner, S. Plätzer, S. Prestel, M. Sekulla, M. Spannowsky, Ninh Duc Le, R. Roth, N. Kaiser, H. Schäfer-Siebert, O. Schlimpert

…who are working hard to finalize release of VBFNLO 3.0