

EFT in VBFNLO

Dieter Zeppenfeld Area 2 meeting: predictions and tools

KIT Center Elementary Particle and Astroparticle Physics - KCETA

VBFNLO is a collection of many mixed QCD/EW processes with NLO QCD corrections

	3.1 VBF Higgs boson production in association with 2 jets	VBF Higgs	
	3.2 VBF Higgs boson production in association with 3jets	00	
	3.3 VBF Higgs boson production with a photon and two jets	VBF 7 Wiphoton	
	3.4 VBF production of a single vector boson and two jets		
	3.5 VBF production of a spin-2 particle 3.6 VBF production of two vector bosons and two jets		
	3.7 VBF production of two Higgs bosons and two jets	VDO	
	3.8 W production with up to one jet		
	3.9 Double vector boson production	V, VV, VVV	
	3.10 Triple vector boson production		
	3.11 Double vector boson production in association with a hadronic jet	(((((((((((((((((((
	3.12 Triple vector boson production in association with a hadronic jet	v, vv, vv + i jei	
	3.13 Higgs production in association with a W		
	3.14 Higgs production in association with a <i>W</i> and a hadronic jet	V, VV + 2 jets	
	3.15 QCD-induced production of a vector boson in association with two jets		
	3.16 QCD-induced diboson production in association with two jets	Gluon fusion at LO	
	3.17 Higgs boson production in gluon fusion with two jets		
	3.10 Gluon-induced diboson production in association with a hadronic jet		
	5.13 Gluon-induced diboson production in association with a nationic jet		

BSM effects included in many processes

ProcId	Process	E	3SM	
100 101 102 103 104 105 106 107	$\begin{array}{c c} 100 & p_{p}^{(-)} \rightarrow H j j \\ 101 & p_{p}^{(-)} \rightarrow H j j \rightarrow \gamma \gamma j j \\ 102 & p_{p}^{(-)} \rightarrow H j j \rightarrow \mu^{+} \mu^{-} j j \\ 103 & p_{p}^{(-)} \rightarrow H j j \rightarrow \tau^{+} \tau^{-} j j \\ 104 & p_{p}^{(-)} \rightarrow H j j \rightarrow b \bar{b} j j \\ 105 & p_{p}^{(-)} \rightarrow H j j \rightarrow W^{+} W^{-} j j \rightarrow \ell_{1}^{+} \nu_{\ell_{1}} \ell_{2}^{-} \bar{\nu}_{\ell_{2}} j j \\ 106 & p_{p}^{(-)} \rightarrow H j j \rightarrow ZZ j j \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-} j j \\ 107 & p_{p}^{(-)} \rightarrow H j j \rightarrow ZZ j j \rightarrow \ell_{1}^{+} \ell_{1}^{-} \nu_{\ell_{2}} \bar{\nu}_{\ell_{2}} j j \\ 107 & p_{p}^{(-)} \rightarrow H j j \rightarrow ZZ j j \rightarrow \ell_{1}^{+} \ell_{1}^{-} \nu_{\ell_{2}} \bar{\nu}_{\ell_{2}} j j \\ 107 & p_{p}^{(-)} \rightarrow H j j \rightarrow ZZ j j \rightarrow \ell_{1}^{+} \ell_{1}^{-} \nu_{\ell_{2}} \bar{\nu}_{\ell_{2}} j j \\ 107 & p_{p}^{(-)} \rightarrow H j j \rightarrow ZZ j j \rightarrow \ell_{1}^{+} \ell_{1}^{-} \nu_{\ell_{2}} \bar{\nu}_{\ell_{2}} j j \\ 107 & 100$		anomalous HVV couplings, M	SSM
Anon	halous couplings	ProcId	PROCESS	Вѕм
 included in various forms: General form factors Dimension 6 EFT 		120 121 130 140 150	$ \begin{array}{c} p \stackrel{(-)}{p} \rightarrow Z jj \rightarrow \ell^+ \ell^- jj \\ p \stackrel{(-)}{p} \rightarrow Z jj \rightarrow \nu_\ell \bar{\nu}_\ell jj \\ p \stackrel{(-)}{p} \rightarrow W^+ jj \rightarrow \ell^+ \nu_\ell jj \\ p \stackrel{(-)}{p} \rightarrow W^- jj \rightarrow \ell^- \bar{\nu}_\ell jj \\ p \stackrel{(-)}{p} \rightarrow \gamma jj \end{array} $	<pre>anomalous couplings</pre>

.... and dimension-8 EFT operators for VBS

ProcId	Process	BSM
200 210 211 220 230 250 260 270 280 290 291	$\begin{split} p_{p}^{(-)} &\to W^{+}W^{-} jj \to \ell_{1}^{+}\nu_{\ell_{1}}\ell_{2}^{-}\bar{\nu}_{\ell_{2}} jj \\ p_{p}^{(-)} &\to ZZ jj \to \ell_{1}^{+}\ell_{1}^{-}\ell_{2}^{+}\ell_{2}^{-} jj \\ p_{p}^{(-)} &\to ZZ jj \to \ell_{1}^{+}\ell_{1}^{-}\nu_{\ell_{2}}\bar{\nu}_{\ell_{2}} jj \\ p_{p}^{(-)} &\to W^{+}Z jj \to \ell_{1}^{+}\nu_{\ell_{1}}\ell_{2}^{+}\ell_{2}^{-} jj \\ p_{p}^{(-)} &\to W^{-}Z jj \to \ell_{1}^{-}\bar{\nu}_{\ell_{1}}\ell_{2}^{+}\ell_{2}^{-} jj \\ p_{p}^{(-)} &\to W^{+}W^{+} jj \to \ell_{1}^{+}\nu_{\ell_{1}}\ell_{2}^{+}\nu_{\ell_{2}} jj \\ p_{p}^{(-)} &\to W^{-}W^{-} jj \to \ell_{1}^{-}\bar{\nu}_{\ell_{1}}\ell_{2}^{-}\bar{\nu}_{\ell_{2}} jj \\ p_{p}^{(-)} &\to W^{-}W^{-} jj \to \ell_{1}^{-}\bar{\nu}_{\ell_{1}}\ell_{2}^{-}\bar{\nu}_{\ell_{2}} jj \\ p_{p}^{(-)} &\to W^{+}\gamma jj \to \ell^{+}\nu_{\ell}\gamma jj \\ p_{p}^{(-)} &\to W^{-}\gamma jj \to \ell^{-}\bar{\nu}_{\ell}\gamma jj \\ p_{p}^{(-)} &\to Z\gamma jj \to \ell^{+}\ell^{-}\gamma jj \\ p_{p}^{(-)} &\to Z\gamma jj \to \nu_{\ell}\bar{\nu}_{\ell}\gamma jj \end{split}$	<pre>anomalous couplings, two-Higgs model, Kaluza-Klein models, spin-2 models anomalous couplings, two-Higgs model anomalous couplings</pre>

Example: tensor structure of HVV coupling

Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

Physical interpretation of terms:

SM Higgs $\mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$

loop induced couplings for neutral scalar

$$T^{\mu\nu} = a_1 g^{\mu\nu} +$$

$$a_{2} \left(q_{1} \cdot q_{2} g^{\mu\nu} - q_{1}^{\nu} q_{2}^{\mu} \right) + a_{3} \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Dieter Zeppenfeld

Connection to EFT description

We need model of the underlying UV physics to determine the form factors $a_i(q_1, q_2)$ Approximate its low-energy effects by an effective Lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{f_{WW}}{\Lambda^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{\phi}}{\Lambda^2} \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) \left(D_{\mu} \phi \right)^{\dagger} D^{\mu} \phi + \dots + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^4} \mathcal{O}_{i}^{(8)} + \dots$$

Gives leading terms for form factors, e.g. for hWW coupling

$$a_{1} = \frac{2m_{W}^{2}}{v} \left(1 + \frac{f_{\phi}}{\Lambda^{2}} \frac{v^{2}}{2}\right) + \sum_{i} c_{i}^{(1)} \frac{f_{i}^{(8)}}{\Lambda^{4}} v^{2} q^{2} + \cdots$$

$$a_{2} = c^{(2)} \frac{f_{WW}}{\Lambda^{2}} v + \sum_{i} c_{i}^{(2)} \frac{f_{i}^{(8)}}{\Lambda^{4}} v q^{2} + \cdots$$

$$a_{3} = c^{(3)} \frac{\tilde{f}_{WW}}{\Lambda^{2}} v + \sum_{i} c_{i}^{(3)} \frac{\tilde{f}_{i}^{(8)}}{\Lambda^{4}} v q^{2} + \cdots$$

Describe same physics (for a particular vertex) by taking some minimal set of effective Lagrangian coefficients f_i as form factors

Implementation in VBFNLO

Start from effective Lagrangians

$$\mathcal{L} = \frac{g_{5e}^{HZZ}}{2\Lambda_5} H Z_{\mu\nu} Z^{\mu\nu} + \frac{g_{5o}^{HZZ}}{2\Lambda_5} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \frac{g_{5e}^{HWW}}{\Lambda_5} H W^+_{\mu\nu} W^{\mu\nu}_- + \frac{g_{5o}^{HWW}}{\Lambda_5} H \tilde{W}^+_{\mu\nu} W^{\mu\nu}_- + \frac{g_{5o}^{HZ}}{\Lambda_5} H \tilde{Z}_{\mu\nu} A^{\mu\nu} + \frac{g_{5e}^{HZ}}{2\Lambda_5} H A_{\mu\nu} A^{\mu\nu} + \frac{g_{5o}^{HY}}{2\Lambda_5} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \frac{g_{5o}^{HY}}{2\Lambda_5}$$

or, alternatively,

$$\mathcal{L}_{\text{eff}} = \frac{f_{WW}}{\Lambda_6^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{BB}}{\Lambda_6^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi + \text{CP-odd part} + \cdots$$

Implementation in VBFNLO

Start from effective Lagrangians (set PARAMETR1=.true. in anom_HVV.dat)

$$\mathcal{L} = \frac{g_{5e}^{HZZ}}{2\Lambda_5} HZ_{\mu\nu} Z^{\mu\nu} + \frac{g_{5o}^{HZZ}}{2\Lambda_5} H\tilde{Z}_{\mu\nu} Z^{\mu\nu} + \frac{g_{5e}^{HWW}}{\Lambda_5} HW_{\mu\nu}^+ W_{-}^{\mu\nu} + \frac{g_{5o}^{HWW}}{\Lambda_5} H\tilde{W}_{\mu\nu}^+ W_{-}^{\mu\nu} + \frac{g_{5o}^{HZ}}{\Lambda_5} H\tilde{Z}_{\mu\nu} A^{\mu\nu} + \frac{g_{5e}^{HZ}}{2\Lambda_5} HA_{\mu\nu} A^{\mu\nu} + \frac{g_{5o}^{HY}}{2\Lambda_5} H\tilde{A}_{\mu\nu} A^{\mu\nu} + \frac{g_{5o}^{HY}}{2\Lambda_5} H\tilde{$$

or , alternatively, (set PARAMETR3=.true. in anom_HVV.dat)

$$\mathcal{L}_{\text{eff}} = \frac{f_{WW}}{\Lambda_6^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi + \frac{f_{BB}}{\Lambda_6^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi + \text{CP-odd part} + \cdots$$

see VBFNLO manual for details on how to set the anomalous coupling choices Remember to choose form factors in anom_HVV.dat

$$F_1 = \frac{M^2}{q_1^2 - M^2} \frac{M^2}{q_2^2 - M^2} \quad \text{or} \quad F_2 = -2 M^2 C_0 \left(q_1^2, q_2^2, (q_1 + q_2)^2, M^2 \right)$$

EFT operators for HVV and VVV couplings

VBFNLO provides only for a restricted set of dimension 6 operators

$$\mathcal{O}_{W} = (D_{\mu}\phi^{\dagger})\widehat{W}^{\mu\nu}(D_{\nu}\phi)$$

$$\mathcal{O}_{B} = (D_{\mu}\phi^{\dagger})\widehat{B}^{\mu\nu}(D_{\nu}\phi)$$

$$\mathcal{O}_{WW} = \phi^{\dagger}\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\phi$$

$$\mathcal{O}_{BB} = \phi^{\dagger}\widehat{B}_{\mu\nu}\widehat{B}^{\mu\nu}\phi,$$

$$\mathcal{O}_{WWW} = \operatorname{Tr}\left(\widehat{W}^{\mu}_{\ \nu}\widehat{W}^{\nu}_{\ \rho}\widehat{W}^{\rho}_{\ \mu}\right)$$

with

 $\widehat{W}_{\mu\nu} = igT^a W^a_{\mu\nu}$ $\widehat{B}_{\mu\nu} = ig'Y B_{\mu\nu},$

Parameters are set in anom_HVV.dat and anomV.dat which also provides switch to lambda, kappa, g_1 notation

$$\mathcal{L}_{WWZ} = -ie\cot\theta_w \left[g_1^Z \left(W^{\dagger}_{\mu\nu} W^{\mu} Z^{\nu} - W^{\dagger}_{\mu} Z_{\nu} W^{\mu\nu} \right) + \kappa_Z W^{\dagger}_{\mu} W_{\nu} Z^{\mu\nu} + \frac{\lambda_Z}{m_W^2} W^{\dagger}_{\sigma\mu} W^{\mu}_{\nu} Z^{\nu\sigma} \right]$$

See manual for details: https://www.itp.kit.edu/vbfnlo/wiki/doku.php

For aQGC: full set of dimension 8 operators (Eboli et al.)

- Distinguish by dominant set of vector boson helicities
- Longitudinal operators: derivatives of Higgs doublet field

$$\mathcal{O}_{S_0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S_1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S_2} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$$

Wilson coefficients for these operators and analogous transverse dimension-8 operators can be set in anomV.dat

Field strength $\leftarrow \rightarrow$ transverse polarizations

Transverse operators

$$\mathcal{O}_{T_0} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right]
\mathcal{O}_{T_1} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right]
\mathcal{O}_{T_2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right]
\mathcal{O}_{T_5} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta} ,
\mathcal{O}_{T_6} = \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu} ,
\mathcal{O}_{T_7} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha} ,
\mathcal{O}_{T_8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} ,
\mathcal{O}_{T_9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} .
\mathcal{O}_{T_3} = \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}^{\alpha\beta} \right) \operatorname{Tr} \left(\hat{W}_{\nu\alpha} \hat{W}_{\beta\mu} \right)
\mathcal{O}_{T_X} = \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}^{\alpha\beta} \right) \hat{B}_{\nu\alpha} \hat{B}_{\beta\mu}$$

Mixed: transverse-longitudinal

$$\mathcal{O}_{M_{0}} = \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,$$

$$\mathcal{O}_{M_{1}} = \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,$$

$$\mathcal{O}_{M_{2}} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,$$

$$\mathcal{O}_{M_{3}} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,$$

$$\mathcal{O}_{M_{4}} = \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} ,$$

$$\mathcal{O}_{M_{5}} = \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} ,$$

$$\mathcal{O}_{M_{7}} = \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\nu} \Phi \right] .$$

←To be added in VBFNLO 3.0 release

 $VV \rightarrow W^+W^-$ with dimension 8 operators

Effect of constant
$$T_1 = \frac{f_{M,1}}{\Lambda^4}$$
 on $pp \rightarrow W^+W^- jj \rightarrow e^+ \nu_e \mu^- \bar{\nu}_{\mu} jj$

- Huge increase in cross section at high m_{WW} is completely unphysical
- Need form factor for analysis or some other unitarization procedure

Unitarization of tree level amplitude: $T_0 \rightarrow T_u$

K-matrix (also called T-matrix) procedure for on-shell hermitian T₀

$$\mathbf{T}_{L} = \left(\mathbb{1} - \frac{\mathrm{i}}{2}\mathbf{T}_{0}^{\dagger}\right)^{-1} \frac{1}{2}\left(\mathbf{T}_{0} + \mathbf{T}_{0}^{\dagger}\right) = \left(\mathbb{1} + \frac{1}{4}\mathbf{T}_{0}\mathbf{T}_{0}\right)^{-1}\left(\mathbf{T}_{0} + \frac{\mathrm{i}}{2}\mathbf{T}_{0}\mathbf{T}_{0}\right)$$

General virtualities $\rightarrow T_0$ not normal for off-shell VV \rightarrow VV Must distinguish $\mathbf{A}_{t=s} = \mathcal{M}_{(s_1, s_2)} \cdot (q_3, q_4; q_1, q_2)$

$$\mathbf{A}_{t \leftarrow s} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(q_3, q_4; q_1, q_2)$$
$$\mathbf{A}_{s \leftarrow t} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(k_3, k_4; k_1, k_2)$$
$$\mathbf{A}_{t \leftarrow t} = \mathcal{M}_{\lambda_3, \lambda_4; \lambda_1, \lambda_2}(q_3, q_4; k_1, k_2)$$

• Use
$$\mathbf{A}_{t\leftarrow s}^{\text{unit}} = \left(\mathbb{1} + \frac{1}{4}\mathbf{A}_{t\leftarrow s}\mathbf{A}_{s\leftarrow t}\right)^{-1} \left(\mathbf{A}_{t\leftarrow s} + \frac{1}{2}\mathbf{A}_{t\leftarrow t}\mathbf{A}_{t\leftarrow s}\right)$$

Alignment problems avoided by using largest eigenvalue of denominator

$$\mathbf{A}_{t\leftarrow s}^{\text{unit}} = \left(\mathbbm{1} + \frac{1}{4}a_{\max}^2\right)^{-1} \left(\mathbf{A}_{t\leftarrow s} + \frac{\mathrm{i}}{2}\mathbf{A}_{t\leftarrow t}\mathbf{A}_{t\leftarrow s}\right)$$

Defines T_u model

T_u model unitarization now implemented for all VBS processes in VBFNLO

 $qq \to W^+ Zjj \to l^+ l^- l^+ \nu_l jj,$

Will be made available in new release 3.0 of VBFNLO in 2021

THANKS!

NLO corrections and their implementation in VBFNLO have been a collaborative effort! Thanks to my colleagues

V. Hankele, B. Jäger, M. Worek, J. Frank, S. Palmer,
G. Perez, H. Rzehak, F. Schissler, F. Campanario, M. Rauch,
C. Oleari, K. Arnold, J. Baglio, J. Bellm, G. Bozzi,
A. Engemann, C. Englert, B. Feigl, T. Figy, A. Jesser,
M. Kerner, G.Klämke, M. Kubocz, M. Löschner, S. Plätzer,
S. Prestel, M. Sekulla, M. Spannowsky, Ninh Duc Le,
R. Roth, N. Kaiser, H. Schäfer-Siebert, O. Schlimpert

...who are working hard to finalize release of VBFNLO 3.0